云服务器内容精选
-
预审核结果格式说明 审核完毕后,需要按照规定格式组织预标注结果,并保存在特定路径(TARGET_RESULT_DIR)下的json文件中。路径要求见镜像制作(标注)。 Json文件内容组织结构如下所示,labels字段中保存每个对象的标注信息、审核模型预测信息(predict_infos)和审核结果信息(inspection)。 { "labels":[{ #1. 此对象的标注信息 (直接从源数据labels.json中获取),如果未标注出此对象,则无此部分信息 … … #2.此对象的模型预测信息 ,如果模型未预测出此对象,则无此部分信息 "predict_infos": { #形状坐标信息 #对象类别名称 #额外属性信息 } #3.审核结果,如果未审核此对象,则无此部分信息 "inspection": { #字段名称取自OCTPS_INSPECTION_ATTRI_DIR文件 } }, … … ] } 其中3D大规模点云分割任务还包含“labels_ext”和“predict_labels_ext”字段,具体参考•3D大规模点云分割:。 { "labels":[], "labels_ext":{ } "predict_labels":[] } 以2D目标检测为例,完整json结果文件样例如下: { "labels": [ { #1. 此对象的标注信息(直接从源数据labels.json中获取) "label_meta_id": 1846, "bndbox": { "ymin": 545.4334, "xmin": 1158.3188, "ymax": 705.71844, "xmax": 1436.3274 }, "name": "框0504", "shape_type": "bndbox", "serial_number": 2, "label_object_id": 2, "attribute": "{\"优先级\":\"1\"}", "label_meta_name": "框0504", #2.此对象的模型预测信息 "predict_infos": { "bndbox": { "ymin": 545.4334, "xmin": 1158.3188, "ymax": 725.71844, "xmax": 1456.3274 }, "label_meta_name": "框0504", "attribute": "{\"优先级\":\"1\"}" }, #3.审核结果 "inspection": { #字段名称取自OCTPS_INSPECTION_ATTRI_DIR文件 "miss_label_error": false, "vehicle_direction_error": false, "error_desc": "无效", "attribute_error": true, "out_range_label_error": true, "anchor_error": false, "classification_error": false, "extra_label_error": false } } ] } 不同类型的标注对象形状基本信息所需格式不同。下面为各类标注对象predict_infos的字段说明: 2D目标检测 {"predict_infos": { "bndbox": { "ymin": 545.4334, "xmin": 1158.3188, "ymax": 725.71844, "xmax": 1456.3274 }, "label_meta_name": "框0504", "attribute": "{\"优先级\":\"1\"}" } } 2D语义分割 {"predict_infos": { "polygon": { "size": 3, "points": [ { "xpoint": 135.03, "ypoint": 482.94937 }, { "xpoint": 84.318344, "ypoint": 554.4891 }, { "xpoint": 135.03, "ypoint": 482.94937 } ] }, "label_meta_name": "多边形0504", "attribute": "{\"优先级\":\"1\"}" } } 2D车道线 {"predict_infos": { "line": { "size": 3, "points": [ { "xpoint": 901.138, "ypoint": 553.583 }, { "xpoint": 741.36, "ypoint": 630.367 }, { "xpoint": 618.153, "ypoint": 681.566 } ] }, "label_meta_name": "线0504", "attribute": "{\"优先级\":\"1\"}" } } 3D目标检测 { "predict_infos": { "label_meta_name": "Car", "cube_3d": { "rotation": { "x": 0.0, "y": 0.0, "z": 0.08726646 }, "location": { "x": -40.23651584555386, "y": 1.2362389665094042, "z": -0.8413386615781039 }, "attribute": "{}", "dimensions": { "length": 4.459540762142082, "width": 1.4870339632034302, "height": 1.4895729290943762 } } } } 3D大规模点云分割 {"predict_infos": { "polygon_3d_v2": { "ascii_char": "2" }, "name": "car", } } 3D大规模点云分割完整样例 { "labels": [ { "label_meta_id": 4867, "create_time": 0, "polygon_3d_v2": { "ascii_char": "3" }, "name": "car", "shape_type": "polygon_3d_v2", "serial_number": 0, "label_object_id": -1, "attribute": "", "label_meta_name": "car", "inspection": { "miss_label_error": false, "vehicle_direction_error": false, "error_desc": "", "attribute_error": false, "out_range_label_error": false, "anchor_error": false, "classification_error": false, "extra_label_error": false }, "predict_infos": { "polygon_3d_v2": { "ascii_char": "2" }, "name": "car" } }, { "predict_infos": { "polygon_3d_v2": { "ascii_char": "4" }, "name": "van" } } ], "labels_ext": { "ascii_string": "3333333333 3333333333" }, "predict_labels_ext": { "ascii_string": "222222222244444 2222222222" } } labels_ext中保存点云中每个点的标注类别,具体内容说明参考OCTOPUS数据集格式说明。predict_labels_ext中保存点云中每个点的模型预测类别。 3D语义分割审核结果可视化说明:针对有审核属性错误的标注对象,展示该标注对象对应位置点的预测类别。
-
预审核规则格式说明 预审核模型使用的审核规则以字典的格式保存在特定目录下的json文件中(TARGET_RULES_DIR),以便在审核报告中展示。 { "rules": [ { "rule": "", #规则名称 "description": "", #规则具体要求 "inspection_attribute": "" #此规则对应的审核属性,2D包含:多标,漏标,类型错误,未贴合,属性错误。3D包含:多标,漏标,类型错误,未贴合,属性错误,车头方向错误,锚点错误。 } … … ] } 示例: { "rules": [ { "rule": "标注框贴合精度", "description": "标注框与实际对象误差不超过5个像素", "inspection_attribute": "未贴合" }, { "rule": "标注框类别", "description": "类别标注错误", "inspection_attribute": "类型错误" } ] }
-
环境变量使用说明 模型推理所需的待审核数据集目录等信息均可通过注入镜像的环境变量获取,详情见镜像制作(标注)。 环境变量 描述 获取方式(以python为例) OCTPS_DATASET_DIR 全量数据集目录 os.getenv('OCTPS_DATASET_DIR') OCTPS_META_PATH 模型版本关联标注物文件目录 os.getenv('OCTPS_META_PATH') OCTPS_INSPECTION_ATTRI_DIR 审核属性字段目录 os.getenv(' OCTPS_INSPECTION_ATTRI_DIR') OCTPS_DATASET_INDEX_PATH 待审核的数据帧索引文件目录(用于从全量数据集中筛选出需要审核的数据) os.getenv(' OCTPS_DATASET_INDEX_PATH') TARGET_RESULT_DIR 预审核结果数据目录 os.getenv('TARGET_RESULT_DIR') TARGET_RULES_DIR 预审核规则数据目录 os.getenv(' TARGET_RULES_DIR ') TARGET_ LOG _DIR 预审核日志文件目录 os.getenv('TARGET_LOG_DIR')
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格