云服务器内容精选
-
性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输入进行推理,并统计推理时间。执行的示例命令行如下。 #shell benchmark --modelFile=resnet50.mindir --device=Ascend 为了简化用户使用,ModelArts提供了Tailor工具便于用户进行Benchmark性能测试,具体使用方式参考Tailor指导文档。 在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在昇腾场景上,算子需要指定具体的shape信息,并且在模型转换的编译阶段完成对应shape的编译任务,从而能够在推理时支持多种shape的输入。 绝大多数情况下,昇腾芯片推理性能相比于CPU会好很多,但是也可能会遇到和CPU推理性能并无太大差别甚至出现劣化的情况。造成这种情况的原因可能有如下几种: 模型中存在大量的类似于Pad或者Strided_Slice等算子,其在CPU和Ascend上的实现方法存在差异(硬件结构不同),后者在运算此类算子时涉及到数组的重排,性能较差; 模型的部分算子在昇腾上不支持,或者存在Transpose操作,会导致模型切分为多个子图,整体的推理耗时随着子图数量的增多而增长; 模型没有真正的调用昇腾后端,而是自动切换到了CPU上执行,这种情况可以通过输出日志来进行判断。
-
自助性能调优三板斧 基于上一步完成的性能测试,为了最大化模型推理性能,首先确保当前使用的CANN版本是最新版本(最新版本请见此处),每个迭代的CANN版本都有一定的性能收益。在此基础上,可以进行三板斧自助工具式性能调优。这些调优过程由大量的项目交付经验总结,帮助您获得模型最佳推理性能,重复性能测试章节可以验证对应的收益情况。 自助性能调优三板斧分别为:通过固定shape获取更好的常量折叠、AOE性能自动调优、自动高性能算子生成工具。 通过固定shape获取更好的常量折叠 在MindIR格式转换时(即执行converter_lite命令时),通过指定具体的静态shape,并且打开--optimize参数指定“ascend_oriented”能够获得更好的常量折叠优化效果。inputShape查看方法请见转换关键参数准备。 Ascend Optimization Engine converter_lite --modelFile=resnet50.onnx --fmk=ONNX --outputFile=resnet50 --saveType=MINDIR --inputShape="input.1:1,3,224,224" --optimize=ascend_oriented 常量折叠是编译器优化中的通用技术之一,在编译节点简化常量表达。通过多数的现代编译器不会真的产生两个乘法的指令再将结果存储下来,取而代之的是会识别出语句的结构,并在编译时期将数值计算出来而不是运行时去计算(在本例子,结果为2,048,000)。 i = 320 * 200 * 32; AI编译器中,常量折叠是将计算图中预先可以确定输出值的节点替换成常量,并对计算图进行一些结构简化的操作,例如ADDN操作,以及在推理过程中的batch normalization操作等。 以BN折叠为例,如下表示折叠后获得的性能收益。 图1 BN折叠下前向运算性能收益 AOE性能自动调优 自动性能调优工具AOE(Ascend Optimization Engine),可以对于模型的图和算子运行通过内置的知识库进行自动优化,以提升模型的运行效率。开启AOE调优后,模型转换时会自动进行性能调优操作,该过程耗时较长,可能需要数小时。 AOE性能自动优化在模型转换阶段进行配置(即执行converter_lite命令时),通过--configFile参数指定配置文件aoe_config.ini,配置文件通过aoe_mode参数指定调优模式。可选值有: “subgraph tuning”:子图调优。 “operator tuning”:算子调优。 “subgraph tuning, operator tuning”:先进行子图调优,再进行算子调优。 推荐先进行子图调优,再进行算子调优,因为先进行子图调优会生成图的切分方式,子图调优后算子已经被切分成最终的shape了,再进行算子调优时,会基于这个最终shape去做算子调优。如果优先算子调优,这时调优的算子shape不是最终切分后的算子shape,不符合实际使用场景。 本例同时指定了子图调优和算子调优,工具会先进行子图调优,再进行算子调优。 # aoe_config.ini [ascend_context] aoe_mode="subgraph tuning, operator tuning" 指定--configFile=aoe_config.ini即可自动进行性能优化。 #shell converter_lite --modelFile=resnet50.onnx --fmk=ONNX --device=Ascend --outputFile=resnet50_aoe --saveType=MINDIR --configFile=aoe_config.ini 命令执行成功后,性能自动优化前后的性能对比会打印到控制台上,同时会生成更为详细的json格式调优报告。 图2 自动调优输出文件 需要注意的是,并不是所有的模型使用性能自动调优都是有收益的,在本例中,ResNet50模型自动调优收益甚微(模型转换时已经做了部分针对性优化),在有些比较复杂的模型场景下可能会有较好的收益。比如VAE_ENCODER模型使用算子调优收益为11.15%。 图3 VAE_ENCODER模型使用AOE自动调优在屏幕上显示日志 图4 AOE自动调优的输出样例 其中: model_baseline_performance表示调优前模型执行时间,单位为ms。 model_performance_improvement表示调优后模型执行时间减少百分比。 model_result_performance表示调优后模型执行时间。 repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下的算子自动融合功能,可提升在昇腾硬件后端上运行模型的性能。 AKG的配置也是在模型转换阶段进行配置(即执行converter_lite命令时),通过指定对应的配置文件akg.cfg,设置对应的akg优化级别,并且在模型转换时参考样例进行对应的配置。 # akg.cfg [graph_kernel_param] opt_level=2 执行命令: # shell converter_lite --fmk=ONNX --modelFile=model.onnx --outputFile=model --configFile=akg.cfg --optimize=ascend_oriented 自动高性能算子生成工具AKG更多介绍可参考图算融合配置说明和MindSpore AKG。
-
核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路: 迁移评估:针对迁移可行性、工作量,以及可能的性能收益进行大致的预估。 环境准备:利用ModelArts提供的开发环境一键式准备好迁移、调测需要的运行环境与工具链。 模型适配:针对昇腾迁移模型必要的转换和改造。 模型准备,导出和保存确定格式的模型。 转换参数准备,准备模型业务相关的关键参数。 模型转换,包含模型转换、优化和量化等。 应用集成。 针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。 ModelArts开发环境 ModelArts作为华为云上的 AI开发平台 ,提供交互式云上开发环境,包含标准化昇腾算力资源和完整的迁移工具链,帮助用户完成昇腾迁移的调测过程,进一步可在平台上将迁移的模型一键部署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转换后可以在昇腾上获得更好的性能,配合丰富的适配工具链,降低迁移成本,该工具在推理迁移工作的预置镜像已安装,可在镜像中直接使用(见环境准备)。关于MindSpore Lite详细介绍可参考MindSpore Lite文档。在使用MindSpore Lite过程中遇到问题时,可参考MindSpore Lite官网提供的问题定位指南进行问题定位。
-
迁移路线介绍 当前推理迁移时,不同的模型类型可能会采取不同的迁移技术路线。主要分为以下几类: 1. CV类小模型例如yolov5,以及部分AIGC场景的模型迁移,目前推荐使用MindSpore-Lite推理路线,可以利用MindSpore提供的图编译和自动调优能力,达到更好的模型性能。 2. LLM大语言模型场景,在GPU下通常会使用vLLM等大模型推理框架,因此迁移到昇腾时,推荐使用PyTorch + ascend-vllm技术路线进行迁移。 如果您使用的模型在上述案例文档中已包含,建议您直接使用案例中迁移好的模型,如果您的模型不在已提供的范围内,或者您因业务要求需要自行完成端到端的迁移,可以参考本迁移指导书介绍的步骤进行操作。 本文的迁移指导及快速入门案例均针对路线1也即MindSpore-Lite迁移路线进行介绍。使用ascend-vllm路线的迁移指导会在后续提供,您可以从上面的案例中下载相关代码并直接参考实现源码。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格