云服务器内容精选

  • 回答 该应用程序中使用了DStream中的print算子来显示结果,该算子会调用RDD中的take算子来实现底层的计算。 Take算子会以Partition为单位多次触发计算。 在该问题中,由于Shuffle操作,导致take算子默认有两个Partition,Spark首先计算第一个Partition,但由于没有数据输入,导致获取结果不足10个,从而触发第二次计算,因此会出现RDD的DAG结构打印两次的现象。 在代码中将print算子修改为foreach(collect),该问题则不会出现。
  • 配置场景 当Spark Streaming应用与Kafka对接,Spark Streaming应用异常终止并从checkpoint恢复重启后,对于进入Kafka数据的任务,系统默认优先处理应用终止前(A段时间)未完成的任务和应用终止到重启完成这段时间内(B段时间)进入Kafka数据生成的任务,最后再处理应用重启完成后(C段时间)进入Kafka数据生成的任务。并且对于B段时间进入Kafka的数据,Spark将按照终止时间(batch时间)生成相应个数的任务,其中第一个任务读取全部数据,其余任务可能不读取数据,造成任务处理压力不均匀。 如果A段时间的任务和B段时间任务处理得较慢,则会影响C段时间任务的处理。针对上述场景,Spark提供Kafka后进先出功能。 图1 Spark Streaming应用重启时间轴 开启此功能后,Spark将优先调度C段时间内的任务,如果存在多个C段任务,则按照任务产生的先后顺序调度执行,再执行A段时间和B段时间的任务。另外,对于B段时间进入Kafka的数据,Spark除了按照终止时间生成相应任务,还将这个期间进入Kafka的所有数据均匀分配到各个任务,避免任务处理压力不均匀。 约束条件: 目前该功能只适用于Spark Streaming中的Direct方式,且执行结果与上一个batch时间处理结果没有依赖关系(即无state操作,如updatestatebykey)。对多条数据输入流,需要相对独立无依赖的状态,否则可能导致数据切分后结果发生变化。 Kafka后进先出功能的开启要求应用只能对接Kafka输入源。 如果提交应用的同时开启Kafka后进先出和流控功能,对于B段时间进入Kafka的数据,将不启动流控功能,以确保读取这些数据的任务调度优先级最低。应用重新启动后C段时间的任务启用流控功能。
  • 配置描述 在Spark Driver端的“spark-defaults.conf”配置文件中进行设置。 表1 参数说明 参数 说明 默认值 spark.streaming.kafka.direct.lifo 配置是否开启Kafka后进先出功能。 false spark.streaming.kafka010.inputstream.class 获取解耦在 FusionInsight 侧的类。 org.apache.spark.streaming.kafka010.xxDirectKafkaInputDStream
  • 回答 经过定位发现,导致这个问题的原因是:Spark Streaming的计算核数少于Receiver的个数,导致部分Receiver启动以后,系统已经没有资源去运行计算任务,导致第一个任务一直在等待,后续任务一直在排队。从现象上看,就是如问题中的图1中所示,会有两个任务一直在等待。 因此,当Web出现两个任务一直在等待的情况,首先检查Spark的核数是否大于Receiver的个数。 Receiver在Spark Streaming中是一个常驻的Spark Job,Receiver对于Spark是一个普通的任务,但它的生命周期和Spark Streaming任务相同,并且占用一个核的计算资源。 在调试和测试等经常使用默认配置的场景下,要时刻注意核数与Receiver个数的关系。
  • 问题 运行一个Spark Streaming任务,确认有数据输入后,发现没有任何处理的结果。打开Web界面查看Spark Job执行情况,发现如下图所示:有两个Job一直在等待运行,但一直无法成功运行。 图1 Active Jobs 继续查看已经完成的Job,发现也只有两个,说明Spark Streaming都没有触发数据计算的任务(Spark Streaming默认有两个尝试运行的Job,就是图中两个) 图2 Completed Jobs
  • 问题 在Spark Streaming应用执行过程中重启Kafka时,应用无法从Kafka获取topic offset,从而导致生成Job失败。如图1所示,其中2017/05/11 10:57:00~2017/05/11 10:58:00为Kafka重启时间段。2017/05/11 10:58:00重启成功后对应的“Input Size”的值显示为“0 records”。 图1 Web UI界面部分batch time对应Input Size为0 records
  • 回答 Kafka重启成功后应用会按照batch时间把2017/05/11 10:57:00~2017/05/11 10:58:00缺失的RDD补上(如图2所示),尽管UI界面上显示读取的数据个数为“0”,但实际上这部分数据在补的RDD中进行了处理,因此,不存在数据丢失。 Kafka重启时间段的数据处理机制如下。 Spark Streaming应用使用了state函数(例如:updateStateByKey),在Kafka重启成功后,Spark Streaming应用生成2017/05/11 10:58:00 batch任务时,会按照batch时间把2017/05/11 10:57:00~2017/05/11 10:58:00缺失的RDD补上(Kafka重启前Kafka上未读取完的数据,属于2017/05/11 10:57:00之前的batch),如图2所示。 图2 重启时间段缺失数据处理机制
  • 配置场景 当Spark Streaming应用与Kafka对接,Spark Streaming应用异常终止并从checkpoint恢复重启后,对于进入Kafka数据的任务,系统默认优先处理应用终止前(A段时间)未完成的任务和应用终止到重启完成这段时间内(B段时间)进入Kafka数据生成的任务,最后再处理应用重启完成后(C段时间)进入Kafka数据生成的任务。并且对于B段时间进入Kafka的数据,Spark将按照终止时间(batch时间)生成相应个数的任务,其中第一个任务读取全部数据,其余任务可能不读取数据,造成任务处理压力不均匀。 若A段时间的任务和B段时间任务处理得较慢,则会影响C段时间任务的处理。针对上述场景,Spark提供Kafka后进先出功能。 图1 Spark Streaming应用重启时间轴 开启此功能后,Spark将优先调度C段时间内的任务,若存在多个C段任务,则按照任务产生的先后顺序调度执行,再执行A段时间和B段时间的任务。另外,对于B段时间进入Kafka的数据,Spark除了按照终止时间生成相应任务,还将这个期间进入Kafka的所有数据均匀分配到各个任务,避免任务处理压力不均匀。 约束条件: 目前该功能只适用于Spark Streaming中的Direct方式,且执行结果与上一个batch时间处理结果没有依赖关系(即无state操作,如updatestatebykey)。对多条数据输入流,需要相对独立无依赖的状态,否则可能导致数据切分后结果发生变化。 Kafka后进先出功能的开启要求应用只能对接Kafka输入源。 若提交应用的同时开启Kafka后进先出和流控功能,对于B段时间进入Kafka的数据,将不启动流控功能,以确保读取这些数据的任务调度优先级最低。应用重新启动后C段时间的任务启用流控功能。
  • 配置描述 在Spark Driver端的“spark-defaults.conf”配置文件中进行设置。 表1 参数说明 参数 说明 默认值 spark.streaming.kafka.direct.lifo 配置是否开启Kafka后进先出功能。 false spark.streaming.kafka010.inputstream.class 获取解耦在FusionInsight侧的类 org.apache.spark.streaming.kafka010.HWDirectKafkaInputDStream
  • 数据规划 Spark Streaming样例工程的数据存储在Kafka组件中。向Kafka组件发送数据(需要有Kafka权限用户)。 确保集群安装完成,包括HDFS、Yarn、Spark和Kafka。 本地新建文件“input_data1.txt”,将“log1.txt”的内容复制保存到“input_data1.txt”。 在客户端安装节点下创建文件目录:“/home/data”。将上述文件上传到此“/home/data”目录下。 创建Topic。 {zkQuorum}表示ZooKeeper集群信息,格式为IP:port。 $KAFKA_HOME/bin/kafka-topics.sh --create --zookeeper {zkQuorum}/kafka --replication-factor 1 --partitions 3 --topic {Topic} 启动Kafka的Producer,向Kafka发送数据。 java -cp {ClassPath} com.huawei.bigdata.spark.examples.StreamingExampleProducer {BrokerList} {Topic} 其中,ClassPath除样例工程jar包路径外,还应包含Spark客户端Kafka jar包的绝对路径,例如:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/*:{ClassPath}
  • 数据规划 Spark Streaming样例工程的数据存储在Kafka组件中。向Kafka组件发送数据(需要有Kafka权限用户)。 确保集群安装完成,包括HDFS、Yarn、Spark和Kafka。 本地新建文件“input_data1.txt”,将“log1.txt”的内容复制保存到“input_data1.txt”。 在客户端安装节点下创建文件目录:“/home/data”。将上述文件上传到此“/home/data”目录下。 将Kafka的Broker配置参数“allow.everyone.if.no.acl.found”的值修改为“true”。 创建Topic。 {zkQuorum}表示ZooKeeper集群信息,格式为IP:port。 $KAFKA_HOME/bin/kafka-topics.sh --create --zookeeper {zkQuorum}/kafka --replication-factor 1 --partitions 3 --topic {Topic} 启动Kafka的Producer,向Kafka发送数据。 java -cp {ClassPath} com.huawei.bigdata.spark.examples.StreamingExampleProducer {BrokerList} {Topic} 其中,ClassPath除样例jar包路径外,还应包含Spark客户端Kafka jar包的绝对路径,例如:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/*:{ClassPath}
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt” )下。
  • 数据规划 Spark Streaming样例工程的数据存储在Kafka组件中。向Kafka组件发送数据(需要有Kafka权限用户)。 确保集群安装完成,包括HDFS、Yarn、Spark和Kafka。 本地新建文件“input_data1.txt”,将“log1.txt”的内容复制保存到“input_data1.txt”。 在客户端安装节点下创建文件目录:“/home/data”。将上述文件上传到此“/home/data”目录下。 创建Topic。 {zkQuorum}表示ZooKeeper集群信息,格式为IP:port。 $KAFKA_HOME/bin/kafka-topics.sh --create --zookeeper {zkQuorum}/kafka --replication-factor 1 --partitions 3 --topic {Topic} 启动Kafka的Producer,向Kafka发送数据。 java -cp {ClassPath} com.huawei.bigdata.spark.examples.StreamingExampleProducer {BrokerList} {Topic} 其中,ClassPath应包含Spark客户端Kafka jar包的绝对路径,如/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/*
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt” )下。 准备依赖包,将下列jar包上传到Spark客户端所在服务器,“$SPARK_HOME/jars/streamingClient010”目录下。 spark-streaming-kafkaWriter-0-10_2.12-3.1.1-hw-ei-311001.jar kafka-clients-xxx.jar kafka_2.12-xxx.jar spark-sql-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar spark-streaming-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar spark-token-provider-kafka-0-10_2.12-3.1.1-hw-ei-311001-SNAPSHOT.jar 版本号中包含hw-ei的依赖包请从华为开源镜像站下载。 版本号中不包含hw-ei的依赖包都来自开源仓库,请从Maven中心仓获取。
  • 数据规划 Spark Streaming样例工程的数据存储在Kafka组件中。向Kafka组件发送数据(需要有Kafka权限用户)。 确保集群安装完成,包括HDFS、Yarn、Spark和Kafka。 本地新建文件“input_data1.txt”,将“log1.txt”的内容复制保存到“input_data1.txt”。 在客户端安装节点下创建文件目录:“/home/data”。将上述文件上传到此“/home/data”目录下。 将Kafka的Broker配置参数“allow.everyone.if.no.acl.found”的值修改为“true”。 创建Topic。 {zkQuorum}表示ZooKeeper集群信息,格式为IP:port。 $KAFKA_HOME/bin/kafka-topics.sh --create --zookeeper {zkQuorum}/kafka --replication-factor 1 --partitions 3 --topic {Topic} 启动Kafka的Producer,向Kafka发送数据。 java -cp {ClassPath} com.huawei.bigdata.spark.examples.StreamingExampleProducer {BrokerList} {Topic} 其中,ClassPath应包含Spark客户端Kafka jar包的绝对路径,如/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/*