云服务器内容精选
-
操作场景 Succinct Trie特性优化了HFile Block结构,开启后可以减少缓存空间的使用,降低缓存数据驱逐率,提升缓存命中率,适用于频繁读取数据的场景,优化了数据读取性能。 本章节内容仅适用于 MRS 3.3.1及之后版本。 开启Succinct Trie后,HFile文件将不兼容开源版本,如果使用HFile进行数据迁移,且需要迁移到MRS 3.2.0及之前版本时,需要先关闭此特性,再对数据表执行major compaction生成新的HFile文件。
-
操作步骤 参数入口: HBase角色相关的JVM参数需要配置在安装有HBase服务的节点的“${BIGDATA_HOME}/ FusionInsight _HD_*/install/FusionInsight-HBase-2.2.3/hbase/conf/”目录下的“hbase-env.sh”文件中。 每个角色都有各自的JVM参数配置变量,如表1。 表1 HBase相关JVM参数配置变量 变量名 变量影响的角色 HBASE_OPTS 该变量中设置的参数,将影响HBase的所有角色。 SERVER_GC_OPTS 该变量中设置的参数,将影响HBase Server端的所有角色,例如:Master、RegionServer等。 CLIENT_GC_OPTS 该变量中设置的参数,将影响HBase的Client进程。 HBASE_MASTER_OPTS 该变量中设置的参数,将影响HBase的Master。 HBASE_REGIONSERVER_OPTS 该变量中设置的参数,将影响HBase的RegionServer。 HBASE_THRIFT_OPTS 该变量中设置的参数,将影响HBase的Thrift。 配置方式举例: export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_ LOG GER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
-
操作步骤 写数据服务端调优 参数入口: 进入HBase服务参数“全部配置”界面,具体操作请参考修改集群服务配置参数章节。 表1 影响实时写数据配置项 配置参数 描述 默认值 hbase.wal.hsync 控制HLog文件在写入到HDFS时的同步程度。如果为true,HDFS在把数据写入到硬盘后才返回;如果为false,HDFS在把数据写入OS的缓存后就返回。 把该值设置为false比true在写入性能上会更优。 true hbase.hfile.hsync 控制HFile文件在写入到HDFS时的同步程度。如果为true,HDFS在把数据写入到硬盘后才返回;如果为false,HDFS在把数据写入OS的缓存后就返回。 把该值设置为false比true在写入性能上会更优。 true GC_OPTS HBase利用内存完成读写操作。提高HBase内存可以有效提高HBase性能。GC_OPTS主要需要调整HeapSize的大小和NewSize的大小。调整HeapSize大小的时候,建议将Xms和Xmx设置成相同的值,这样可以避免JVM动态调整HeapSize大小的时候影响性能。调整NewSize大小的时候,建议把其设置为HeapSize大小的1/8。 HMaster:当HBase集群规模越大、Region数量越多时,可以适当调大HMaster的GC_OPTS参数。 RegionServer:RegionServer需要的内存一般比HMaster要大。在内存充足的情况下,HeapSize可以相对设置大一些。 说明: 主HMaster的HeapSize为4G的时候,HBase集群可以支持100000 region数的规模。根据经验值,集群每增加35000个region,HeapSize增加2G,主HMaster的HeapSize不建议超过32GB。 HMaster -server -Xms4G -Xmx4G -XX:NewSize=512M -XX:MaxNewSize=512M -XX:MetaspaceSize=128M -XX:MaxMetaspaceSize=512M -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=65 -XX:+PrintGCDetails -Dsun.rmi.dgc.client.gcInterval=0x7FFFFFFFFFFFFFE -Dsun.rmi.dgc.server.gcInterval=0x7FFFFFFFFFFFFFE -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M Region Server -server -Xms6G -Xmx6G -XX:NewSize=1024M -XX:MaxNewSize=1024M -XX:MetaspaceSize=128M -XX:MaxMetaspaceSize=512M -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=65 -XX:+PrintGCDetails -Dsun.rmi.dgc.client.gcInterval=0x7FFFFFFFFFFFFFE -Dsun.rmi.dgc.server.gcInterval=0x7FFFFFFFFFFFFFE -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M hbase.regionserver.handler.count 表示在RegionServer上启动的RPC侦听器实例数。如果设置过高会导致激烈线程竞争,如果设置过小,请求将会在RegionServer长时间等待,降低处理能力。根据资源情况,适当增加处理线程数。 建议根据CPU的使用情况,可以选择设置为100至300之间的值。 200 hbase.hregion.max.filesize HStoreFile的最大大小(单位:Byte)。如果任何一个列族HStoreFile超过此参数值,则托管Hregion将会一分为二。 10737418240 hbase.hregion.memstore.flush.size 在RegionServer中,当写操作内存中存在超过memstore.flush.size大小的memstore,则MemStoreFlusher就启动flush操作将该memstore以hfile的形式写入对应的store中。 如果RegionServer的内存充足,而且活跃Region数量也不是很多的时候,可以适当增大该值,可以减少compaction的次数,有助于提升系统性能。 同时,这种flush产生的时候,并不是紧急的flush,flush操作可能会有一定延迟,在延迟期间,写操作还可以进行,Memstore还会继续增大,最大值为“memstore.flush.size” * “hbase.hregion.memstore.block.multiplier”。当超过最大值时,将会阻塞操作。适当增大“hbase.hregion.memstore.block.multiplier”可以减少阻塞,减少性能波动。单位:字节。 134217728 hbase.regionserver.global.memstore.size 更新被锁定以及强制冲洗发生之前一个RegionServer上支持的所有MemStore的大小。RegionServer中,负责flush操作的是MemStoreFlusher线程。该线程定期检查写操作内存,当写操作占用内存总量达到阈值,MemStoreFlusher将启动flush操作,按照从大到小的顺序,flush部分相对较大的memstore,直到所占用内存小于阈值。 阈值 = “hbase.regionserver.global.memstore.size” * “hbase.regionserver.global.memstore.size.lower.limit” * “HBase_HEAPSIZE” 说明: 该配置与“hfile.block.cache.size”的和不能超过0.8,也就是写和读操作的内存不能超过HeapSize的80%,这样可以保证除读和写外其它操作的正常运行。 0.4 hbase.hstore.blockingStoreFiles 在region flush前首先判断file文件个数,是否大于hbase.hstore.blockingStoreFiles。 如果大于需要先compaction并且让flush延时90s(这个值可以通过hbase.hstore.blockingWaitTime进行配置),在延时过程中,将会继续写从而使得Memstore还会继续增大超过最大值 “memstore.flush.size” * “hbase.hregion.memstore.block.multiplier”,导致写操作阻塞。当完成compaction后,可能就会产生大量写入。这样就导致性能激烈震荡。 增加hbase.hstore.blockingStoreFiles,可以减低BLOCK几率。 15 hbase.regionserver.thread.compaction.throttle 大于此参数值的压缩将被大线程池执行,单位:Byte。控制一次Minor Compaction时,进行compaction的文件总大小的阈值。Compaction时的文件总大小会影响这一次compaction的执行时间,如果太大,可能会阻塞其它的compaction或flush操作。 1610612736 hbase.hstore.compaction.min 每次执行minor compaction的HStoreFile的最小数量。当一个Store文件超过该值时,会进行compact,适当增大该值,可以减少文件被重复执行compaction。但是如果过大,会导致Store文件数过多而影响读取的性能。 6 hbase.hstore.compaction.max 每次执行minor compaction的HStoreFile的最大数量。与“hbase.hstore.compaction.max.size”的作用基本相同,主要是控制一次compaction操作的时间不要太长。 10 hbase.hstore.compaction.max.size 如果一个HFile文件的大小大于该值,那么在Minor Compaction操作中不会选择这个文件进行compaction操作,除非进行Major Compaction操作。 这个值可以防止较大的HFile参与compaction操作。在禁止Major Compaction后,一个Store中可能存在几个HFile,而不会合并成为一个HFile,这样不会对数据读取造成太大的性能影响。单位:字节。 9223372036854775807 hbase.hregion.majorcompaction 单个区域内所有HStoreFile文件主压缩的时间间隔,单位:毫秒。由于执行Major Compaction会占用较多的系统资源,如果正在处于系统繁忙时期,会影响系统的性能。 如果业务没有较多的更新、删除、回收过期数据空间时,可以把该值设置为0,以禁止Major Compaction。 如果必须要执行Major Compaction,以回收更多的空间,可以适当增加该值,同时配置参数“hbase.offpeak.end.hour”和“hbase.offpeak.start.hour”以控制Major Compaction发生在业务空闲的时期。单位:毫秒。 604800000 hbase.regionserver.maxlogs hbase.regionserver.hlog.blocksize 表示一个RegionServer上未进行Flush的Hlog的文件数量的阈值,如果大于该值,RegionServer会强制进行flush操作。 表示每个HLog文件的最大大小。如果HLog文件大小大于该值,就会滚动出一个新的HLog文件,旧的将被禁用并归档。 这两个参数共同决定了RegionServer中可以存在的未进行Flush的hlog数量。当这个数据量小于MemStore的总大小的时候,会出现由于HLog文件过多而触发的强制flush操作。这个时候可以适当调整这两个参数的大小,以避免出现这种强制flush的情况。单位:字节。 32 134217728 写数据客户端调优 写数据时,在场景允许的情况下,更适合使用Put List的方式,可以极大的提升写性能。每一次Put的List的长度,需要结合单条Put的大小,以及实际环境的一些参数进行设定。建议在选定之前先做一些基础的测试。 写数据表设计调优 表2 影响实时写数据相关参数 配置参数 描述 默认值 COMPRESSION 配置数据的压缩算法,这里的压缩是HFile中block级别的压缩。对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。 NONE BLOCKSIZE 配置HFile中block块的大小,不同的block块大小,可以影响HBase读写数据的效率。越大的block块,配合压缩算法,压缩的效率就越好;但是由于HBase的读取数据是以block块为单位的,所以越大的block块,对于随机读的情况,性能可能会比较差。 如果要提升写入的性能,一般扩大到128KB或者256KB,可以提升写数据的效率,也不会影响太大的随机读性能。单位:字节 65536 IN_MEMORY 配置这个表的数据优先缓存在内存中,这样可以有效提升读取的性能。对于一些小表,而且需要频繁进行读取操作的,可以设置此配置项。 false
-
操作步骤 读数据服务端调优 参数入口: 进入HBase服务参数“全部配置”界面,具体操作请参考修改集群服务配置参数章节。 表1 影响实时读数据配置项 配置参数 描述 默认值 GC_OPTS HBase利用内存完成读写操作。提高HBase内存可以有效提高HBase性能。 GC_OPTS主要需要调整HeapSize的大小和NewSize的大小。调整HeapSize大小的时候,建议将Xms和Xmx设置成相同的值,这样可以避免JVM动态调整HeapSize大小的时候影响性能。调整NewSize大小的时候,建议把其设置为HeapSize大小的1/8。 HMaster:当HBase集群规模越大、Region数量越多时,可以适当调大HMaster的GC_OPTS参数。 RegionServer:RegionServer需要的内存一般比HMaster要大。在内存充足的情况下,HeapSize可以相对设置大一些。 说明: 主HMaster的HeapSize为4G的时候,HBase集群可以支持100000 region数的规模。根据经验值,集群每增加35000个region,HeapSize增加2G,主HMaster的HeapSize不建议超过32GB。 HMaster -server -Xms4G -Xmx4G -XX:NewSize=512M -XX:MaxNewSize=512M -XX:MetaspaceSize=128M -XX:MaxMetaspaceSize=512M -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=65 -XX:+PrintGCDetails -Dsun.rmi.dgc.client.gcInterval=0x7FFFFFFFFFFFFFE -Dsun.rmi.dgc.server.gcInterval=0x7FFFFFFFFFFFFFE -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M Region Server -server -Xms6G -Xmx6G -XX:NewSize=1024M -XX:MaxNewSize=1024M -XX:MetaspaceSize=128M -XX:MaxMetaspaceSize=512M -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=65 -XX:+PrintGCDetails -Dsun.rmi.dgc.client.gcInterval=0x7FFFFFFFFFFFFFE -Dsun.rmi.dgc.server.gcInterval=0x7FFFFFFFFFFFFFE -XX:-OmitStackTraceInFastThrow -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M hbase.regionserver.handler.count 表示RegionServer在同一时刻能够并发处理多少请求。如果设置过高会导致激烈线程竞争,如果设置过小,请求将会在RegionServer长时间等待,降低处理能力。根据资源情况,适当增加处理线程数。 建议根据CPU的使用情况,可以选择设置为100至300之间的值。 200 hfile.block.cache.size HBase缓存区大小,主要影响查询性能。根据查询模式以及查询记录分布情况来决定缓存区的大小。如果采用随机查询使得缓存区的命中率较低,可以适当降低缓存区大小。 当offheap关闭时,默认值为0.25。当offheap开启时,默认值是0.1。 如果同时存在读和写的操作,这两种操作的性能会互相影响。如果写入导致的flush和Compaction操作频繁发生,会占用大量的磁盘IO操作,从而影响读取的性能。如果写入导致阻塞较多的Compaction操作,就会出现Region中存在多个HFile的情况,从而影响读取的性能。所以如果读取的性能不理想的时候,也要考虑写入的配置是否合理。 读数据客户端调优 Scan数据时需要设置caching(一次从服务端读取的记录条数,默认是1),如果使用默认值读性能会降到极低。 当不需要读一条数据所有的列时,需要指定读取的列,以减少网络IO。 只读取RowKey时,可以为Scan添加一个只读取RowKey的filter(FirstKeyOnlyFilter或KeyOnlyFilter)。 读数据表设计调优 表2 影响实时读数据相关参数 配置参数 描述 默认值 COMPRESSION 配置数据的压缩算法,这里的压缩是HFile中block级别的压缩。对于可以压缩的数据,配置压缩算法可以有效减少磁盘的IO,从而达到提高性能的目的。 说明: 并非所有数据都可以进行有效压缩。例如一张图片的数据,因为图片一般已经是压缩后的数据,所以压缩效果有限。常用的压缩算法是SNAPPY,因为它有较好的Encoding/Decoding速度和可以接受的压缩率。 NONE BLOCKSIZE 配置HFile中block块的大小,不同的block块大小,可以影响HBase读写数据的效率。越大的block块,配合压缩算法,压缩的效率就越好;但是由于HBase的读取数据是以block块为单位的,所以越大的block块,对于随机读的情况,性能可能会比较差。 如果要提升写入的性能,一般扩大到128KB或者256KB,可以提升写数据的效率,也不会影响太大的随机读性能。单位:字节。 65536 DATA_BLOCK_ENCODING 配置HFile中block块的编码方法。当一行数据中存在多列时,一般可以配置为“FAST_DIFF”,可以有效的节省数据存储的空间,从而提供性能。 NONE
-
操作步骤 JVM GC参数 RegionServer GC_OPTS参数设置建议: -Xms与-Xmx设置相同的值,需要根据实际情况设置,增大内存可以提高读写性能,可以参考参数“hfile.block.cache.size”(见表2)和参数“hbase.regionserver.global.memstore.size”(见表1)的介绍进行设置。 -XX:NewSize与-XX:MaxNewSize设置相同值,建议低负载场景下设置为“512M”,高负载场景下设置为“2048M”。 -XX:CMSInitiatingOccupancyFraction建议设置为“100 * (hfile.block.cache.size + hbase.regionserver.global.memstore.size + 0.05)”,最大值不超过90。 -XX:MaxDirectMemorySize表示JVM使用的堆外内存,建议低负载情况下设置为“512M”,高负载情况下设置为“2048M”。 GC_OPTS参数中-XX:MaxDirectMemorySize默认没有配置,如需配置,用户可在GC_OPTS参数中自定义添加。 Put相关参数 RegionServer处理put请求的数据,会将数据写入memstore和hlog, 当memstore大小达到设置的“hbase.hregion.memstore.flush.size”参数值大小时,memstore就会刷新到HDFS生成HFile。 当当前region的列簇的HFile数量达到“hbase.hstore.compaction.min”参数值时会触发compaction。 当当前region的列簇HFile数达到“hbase.hstore.blockingStoreFiles”参数值时会阻塞memstore刷新生成HFile的操作,导致put请求阻塞。 表1 Put相关参数 参数 描述 默认值 hbase.wal.hsync 每一条wal是否持久化到硬盘。 参考提升HBase连续Put数据场景性能。 true hbase.hfile.hsync hfile写是否立即持久化到硬盘。 参考提升HBase连续Put数据场景性能。 true hbase.hregion.memstore.flush.size 如果MemStore的大小(单位:Byte)超过指定值,MemStore将被冲洗至磁盘。该参数值将被运行每个hbase.server.thread.wakefrequency的线程所检验。建议设置为HDFS块大小的整数倍,在内存足够put负载大情况下可以调整增大。 134217728 hbase.regionserver.global.memstore.size 更新被锁定以及强制冲洗发生之前一个RegionServer上支持的所有MemStore的大小。建议设置为“hbase.hregion.memstore.flush.size * 写活跃region数 / RegionServer GC -Xmx”。默认值为“0.4”,表示使用RegionServer GC -Xmx的40%。 0.4 hbase.hstore.flusher.count memstore的flush线程数,在put高负载场景下可以适当调大。 2 hbase.regionserver.thread.compaction.small 小压缩线程数,在put高负载情况下可以适当调大。 10 hbase.hstore.blockingStoreFiles 如果一个Store内的HStoreFile文件数量超过指定值,则针对此HRegion的更新将被锁定直到一个压缩完成或者base.hstore.blockingWaitTime被超过。每冲洗一次MemStore一个StoreFile文件被写入。在put高负载场景下可以适当调大。 15 Scan相关参数 表2 Scan相关参数 参数 描述 默认值 hbase.client.scanner.timeout.period 客户端和RegionServer端参数,表示客户端执行scan的租约超时时间。建议设置为60000ms的整数倍,在读高负载情况下可以适当调大。单位:毫秒。 60000 hfile.block.cache.size 数据缓存所占的RegionServer GC -Xmx百分比,在读高负载情况下可以适当调大以增大缓存命中率以提高性能。表示分配给HFile/StoreFile所使用的块缓存的最大heap(-Xmx setting)的百分比。 当offheap关闭时,默认值为0.25,当offheap开启时,默认值是0.1。 Handler相关参数 表3 Handler相关参数 参数 描述 默认值 hbase.regionserver.handler.count RegionServer上的RPC侦听器实例数,建议设置为200 ~ 400之间。 200 hbase.regionserver.metahandler.count RegionServer中处理优先请求的程序实例的数量,建议设置为200 ~ 400之间。 200
-
操作步骤 参数入口: HBase角色相关的JVM参数需要配置在安装有HBase服务的节点的“${BIGDATA_HOME}/FusionInsight_HD_*/install/FusionInsight-HBase-2.2.3/hbase/conf/”目录下的“hbase-env.sh”文件中。 每个角色都有各自的JVM参数配置变量,如表1。 表1 HBase相关JVM参数配置变量 变量名 变量影响的角色 HBASE_OPTS 该变量中设置的参数,将影响HBase的所有角色。 SERVER_GC_OPTS 该变量中设置的参数,将影响HBase Server端的所有角色,例如:Master、RegionServer等。 CLIENT_GC_OPTS 该变量中设置的参数,将影响HBase的Client进程。 HBASE_MASTER_OPTS 该变量中设置的参数,将影响HBase的Master。 HBASE_REGIONSERVER_OPTS 该变量中设置的参数,将影响HBase的RegionServer。 HBASE_THRIFT_OPTS 该变量中设置的参数,将影响HBase的Thrift。 配置方式举例: export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
-
操作步骤 JVM GC参数 RegionServer GC_OPTS参数设置建议: -Xms与-Xmx设置相同的值,需要根据实际情况设置,增大内存可以提高读写性能,可以参考参数“hfile.block.cache.size”(见表2)和参数“hbase.regionserver.global.memstore.size”(见表1)的介绍进行设置。 -XX:NewSize与-XX:MaxNewSize设置相同值,建议低负载场景下设置为“512M”,高负载场景下设置为“2048M”。 -XX:CMSInitiatingOccupancyFraction建议设置为“100 * (hfile.block.cache.size + hbase.regionserver.global.memstore.size + 0.05)”,最大值不超过90。 -XX:MaxDirectMemorySize表示JVM使用的堆外内存,建议低负载情况下设置为“512M”,高负载情况下设置为“2048M”。 GC_OPTS参数中-XX:MaxDirectMemorySize默认没有配置,如需配置,用户可在GC_OPTS参数中自定义添加。 Put相关参数 RegionServer处理put请求的数据,会将数据写入memstore和hlog, 当memstore大小达到设置的“hbase.hregion.memstore.flush.size”参数值大小时,memstore就会刷新到HDFS生成HFile。 当当前region的列簇的HFile数量达到“hbase.hstore.compaction.min”参数值时会触发compaction。 当当前region的列簇HFile数达到“hbase.hstore.blockingStoreFiles”参数值时会阻塞memstore刷新生成HFile的操作,导致put请求阻塞。 表1 Put相关参数 参数 描述 默认值 hbase.wal.hsync 每一条wal是否持久化到硬盘。 参考提升HBase连续Put数据场景性能。 true hbase.hfile.hsync hfile写是否立即持久化到硬盘。 参考提升HBase连续Put数据场景性能。 true hbase.hregion.memstore.flush.size 若MemStore的大小(单位:Byte)超过指定值,MemStore将被冲洗至磁盘。该参数值将被运行每个hbase.server.thread.wakefrequency的线程所检验。建议设置为HDFS块大小的整数倍,在内存足够put负载大情况下可以调整增大。 134217728 hbase.regionserver.global.memstore.size 更新被锁定以及强制冲洗发生之前一个RegionServer上支持的所有MemStore的大小。建议设置为“hbase.hregion.memstore.flush.size * 写活跃region数 / RegionServer GC -Xmx”。默认值为“0.4”,表示使用RegionServer GC -Xmx的40%。 0.4 hbase.hstore.flusher.count memstore的flush线程数,在put高负载场景下可以适当调大。 2 hbase.regionserver.thread.compaction.small 小压缩线程数,在put高负载情况下可以适当调大。 10 hbase.hstore.blockingStoreFiles 若一个Store内的HStoreFile文件数量超过指定值,则针对此HRegion的更新将被锁定直到一个压缩完成或者base.hstore.blockingWaitTime被超过。每冲洗一次MemStore一个StoreFile文件被写入。在put高负载场景下可以适当调大。 15 Scan相关参数 表2 Scan相关参数 参数 描述 默认值 hbase.client.scanner.timeout.period 客户端和RegionServer端参数,表示客户端执行scan的租约超时时间。建议设置为60000ms的整数倍,在读高负载情况下可以适当调大。单位:毫秒。 60000 hfile.block.cache.size 数据缓存所占的RegionServer GC -Xmx百分比,在读高负载情况下可以适当调大以增大缓存命中率以提高性能。表示分配给HFile/StoreFile所使用的块缓存的最大heap(-Xmx setting)的百分比。 当offheap关闭时,默认值为0.25,当offheap开启时,默认值是0.1。 Handler相关参数 表3 Handler相关参数 参数 描述 默认值 hbase.regionserver.handler.count RegionServer上的RPC侦听器实例数,建议设置为200 ~ 400之间。 200 hbase.regionserver.metahandler.count RegionServer中处理优先请求的程序实例的数量,建议设置为200 ~ 400之间。 200
-
操作步骤 参数入口:执行批量加载任务时,在BulkLoad命令行中加入如下参数。 表1 增强BulkLoad效率的配置项 参数 描述 配置的值 -Dimporttsv.mapper.class 用户自定义mapper通过把键值对的构造从mapper移动到reducer以帮助提高性能。mapper只需要把每一行的原始文本发送给reducer,reducer解析每一行的每一条记录并创建键值对。 说明: 当该值配置为“org.apache.hadoop.hbase.mapreduce.TsvImporterByteMapper”时,只在执行没有HBASE_CELL_VISIBILITY OR HBASE_CELL_TTL选项的批量加载命令时使用。使用“org.apache.hadoop.hbase.mapreduce.TsvImporterByteMapper”时可以得到更好的性能。 org.apache.hadoop.hbase.mapreduce.TsvImporterByteMapper 和 org.apache.hadoop.hbase.mapreduce.TsvImporterTextMapper
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格