云服务器内容精选

  • Step5 训练Wav2Lip模型 准备预训练模型。下载需要使用的预训练模型。 人脸检测预训练模型,下载链接。 专家唇形同步鉴别器,下载链接 ,此链接是官方提供的预训练模型。训练Wav2Lip模型时需要使用专家唇形同步鉴别器,用户可以用自己的数据训练,也可以直接使用官方提供的预训练模型。 处理初始视频数据集。 将下载好的人脸检测预训练模型修改名字为s3fd.pth,上传到/home/ma-user/Wav2Lip/face_detection/detection/sfd/s3fd.pth目录。 下载LRS2数据集。数据集文件夹结构如下: ├── LRS2_partly | ├── main | │ ├── five-digit numbered video IDs ending with (.mp4) | │ ├── 00001.mp4 | │ ├── 00002.mp4 对数据集进行预处理。具体命令如下。 python preprocess.py --data_root ./LRS2_partly --preprocessed_root lrs2_preprocessed/ data_root参数为原始视频根目录,preprocessed_root参数为处理后生成的数据集目录。 处理后数据目录如下所示。 preprocessed_root (lrs2_preprocessed) ├── main | ├── Folders with five-digit numbered video IDs(00001) | │ ├── *.jpg | │ ├── audio.wav | ├── 00001 | │ ├── *.jpg | │ ├── audio.wav 将LRS2文件列表中的.txt文件(train、val)放入该filelists文件夹中。 图2 filelists文件夹 train.txt和val.txt内容参考如下,为处理后视频数据的目录名字。 图3 train.txt和val.txt内容 训练专家唇形同步鉴别器。 如果使用LRS2数据集,可选择跳过此步骤。如果使用自己的数据集,训练命令参考如下。 python color_syncnet_train.py --data_root ./lrs2_preprocessed/main/ --checkpoint_dir ./savedmodel/syncnet_model/ --checkpoint_path ./checkpoints/lipsync_expert.pth 参数说明: --data_root :处理后的视频数据目录,与train.txt内容拼接后得到单个数据目录,例如:lrs2_preprocessed/main/00001。 --checkpoint_dir :此目录用于保存模型。 -checkpoint_path :(可选)可基于此目录的lipsync_expert模型继续进行训练,如果重新训练则不需要此参数。 默认每10000 step保存一次模型。 训练Wav2Lip模型。 训练Wav2Lip模型时需要使用专家唇形同步鉴别器。可以使用上一步3中的训练结果,也可以直接下载官方提供的预训练权重来使用。 具体训练命令如下。 python wav2lip_train.py --data_root ./lrs2_preprocessed/main/ --checkpoint_dir ./savedmodel --syncnet_checkpoint_path ./checkpoints/lipsync_expert.pth --checkpoint_path ./checkpoints/wav2lip.pth 首次训练会进行模型评估,默认为700 step,请耐心等待,结束之后会进行正式训练。 参数说明: --data_root :处理后的视频数据目录,与train.txt内容拼接后得到单个数据目录,例如:lrs2_preprocessed/main/00001。 --checkpoint_dir :此目录用于保存模型。 --syncnet_checkpoint_path :专家鉴别器的目录。 --checkpoint_path :(可选)可基于此目录的Wav2Lip模型继续进行训练,如果重新训练则不需要此参数。 默认每3000 step保存一次模型。 注: 专家鉴别器的评估损失应降至约 0.25,Wav2Lip评估同步损失应降至约 0.2,以获得良好的结果。 可以在文件设置其他不太常用的超参数hparams.py,常用超参如下: nepochs 训练总步数 checkpoint_interval Wav2Lip模型保存间隔步数 eval_interval Wav2Lip模型评估间隔步数 syncnet_eval_interval 专家鉴别器模型评估间隔步数 syncnet_checkpoint_interval 专家鉴别器模型保存间隔步数
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907-xxx.zip软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一: swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a 从SWR拉取。
  • Step4 安装依赖和软件包 从github拉取Wav2Lip代码。 cd /home/ma-user git clone https://github.com/Rudrabha/Wav2Lip.git cd /home/ma-user/Wav2Lip git reset --hard f361e9527b917a435928a10 如果出现报错SSL certificate problem: self signed certificate in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip.git 安装Wav2Lip Ascend软件包。 将获取到的Wav2Lip Ascend软件包AscendCloud-AIGC-*.zip文件上传到容器的/home/ma-user目录下。获取路径:Support网站。 解压AscendCloud-AIGC-*.zip文件,解压后将里面指定文件与对应Wave2Lip文件进行替换。 cd /home/ma-user unzip AscendCloud-AIGC-*.zip -d ./AscendCloud cp AscendCloud/multimodal_algorithm/Wav2Lip/train/f361e9527b917a435928a10/* /home/ma-user/Wav2Lip/ rm -rf AscendCloud* AscendCloud-AIGC-*.zip后面的*表示时间戳,请按照实际替换。 要替换的文件目录结构如下所示: |---Wav2Lip_code/ --- requirements.txt #建议的依赖包版本 注:需要对以下文件进行修改 --- color_syncnet_train.py #训练expert discriminator唇形同步鉴别器 --- wav2lip_train.py #训练 Wav2Lip 模型 --- preprocess.py #对初始视频数据进行推理 在以上三个文件内import末尾增加import如下: import torch_npu from torch_npu.contrib import transfer_to_npu 安装Python依赖包,文件为requirements.txt文件。 pip install -r requirements.txt
  • Step1 准备环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step3 启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称或ID" // 启动一个容器去运行镜像 docker run -itd --net=bridge \ -p 8080:8080 \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=32g \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} \ /bin/bash 参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 -p 8080:8080:开启一个端口,可以web访问(如冲突,可自行更换其他端口)。 ${image_name}:容器镜像的名称。 通过容器名称进入容器中。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker exec -it ${container_name} bash
  • Step1 准备环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • Step4 启动容器镜像 启动容器镜像。启动前请先按照参数说明修改${}中的参数。 docker run -itd --net=host \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ --shm-size=1024g \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /var/log/npu/:/usr/slog \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 ${image_id}:镜像ID,通过docker images查看刚拉取的镜像ID。 通过容器名称进入容器中。默认使用ma-user用户,后续所有操作步骤都在ma-user用户下执行。 docker exec -it ${container_name} bash
  • Step5 下载并适配代码 在容器中解压代码包。 unzip AscendCloud-AIGC-6.3.907-*.zip rm -rf AscendCloud-AIGC-6.3.907-* 执行wav2lip推理插件的安装脚本。 cd multimodal_algorithm/Wav2Lip/inference/f361e9527b917a435928a10931fee9ac7be109cd source install.sh 从Github官网下载Wav2lip权重文件和Wav2Lip+GAN权重文件(下载链接),并放在容器的checkpoints目录下。上一步执行完source install.sh命令后,会自动生成checkpoints目录。 图1 下载权重文件 从官网下载模型s3fd-619a316812.pth,并重命名为s3fd.pth,放在容器路径face_detection/detection/sfd下。上一步执行完source install.sh命令后,会自动生成face_detection/detection/sfd目录。
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.907-xxx.zip软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一: swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240727152329-0f2c29a 从SWR拉取。
  • 步骤一:检查环境 请参考Lite Server资源开通,购买Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 获取基础镜像。建议使用官方提供的镜像部署推理服务。镜像地址{image_url}参见表2 获取软件和镜像。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称或ID" 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如sdxl-diffusers。 --device=/dev/davinci1:挂载主机的/dev/davinci1到容器的/dev/davinci1。可以使用npu-smi info查看空闲卡号,修改davinci后数字可以更改挂载卡。 -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同 docker run -itd \ --name ${container_name} \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --shm-size 60g \ --device=/dev/davinci_manager \ --device=/dev/hisi_hdc \ --device=/dev/devmm_svm \ --device=/dev/davinci1 \ --network=bridge \ ${image_name} bash 进入容器。需要将${container_name}替换为实际的容器名称。 docker exec -it ${container_name} bash
  • 步骤三:开始训练 进入容器中/home/ma-user/aigc_train/torch_npu/sd3路径下 cd /home/ma-user/aigc_train/torch_npu/sd3 安装依赖 sh prepare.sh 如果这一步安装依赖失败,是部分依赖之间有冲突,手动在终端依次执行如下命令解决。 pip install wandb pip install urllib3==1.26.7 cp run.sh diffusers/examples/dreambooth/ 开始训练。 进入diffusers/examples/dreambooth cd diffusers/examples/dreambooth 修改run.sh文件的前两行为模型权重和数据集路径。bs,step,resolution用给定参数。 运行run.sh sh run.sh 训练过程中,终端弹出wandb选项,如下图所示,输入3即可。 训练成功如下图所示。
  • 步骤二:上传代码、权重和数据集到容器中 安装插件代码包。将获取到的插件代码包AscendCloud-AIGC-6.3.912-xxx.zip文件上传到容器的/home/ma-user目录下,并解压。 cd /home/ma-user unzip AscendCloud-AIGC-6.3.912-*.zip #解压 下载模型权重,上传到容器的/home/ma-user目录下,官网下载地址:https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers/tree/main(需登录) 下载公开数据集,上传到容器的/home/ma-user目录下,官网下载地址:https://huggingface.co/datasets/diffusers/dog-example/tree/main。 下载好之后删除数据集中的.gitattributes文件。
  • 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像包 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241213131522-aafe527 SWR上拉取。
  • 步骤三:安装依赖 进入容器中/home/ma-user/aigc_train/torch_npu/sd35路径下。 cd /home/ma-user/aigc_train/torch_npu/sd35 安装依赖。 # 拉取diffusers源码并进入目录 git clone https://github.com/huggingface/diffusers cd diffusers git checkout v0.31.0 cp ../install.sh . # 安装依赖 bash install.sh
  • 步骤一:检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 获取基础镜像。建议使用官方提供的镜像部署推理服务。镜像地址{image_url}参见表2 获取软件和镜像。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称或ID" 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如sdxl-diffusers。 --device=/dev/davinci1:挂载主机的/dev/davinci1到容器的/dev/davinci1。可以使用npu-smi info查看空闲卡号,修改davinci后数字可以更改挂载卡。 -v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下可存放项目所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同 docker run -itd \ --name ${container_name} \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \ -v ${work_dir}:${container_work_dir} \ --shm-size 60g \ --device=/dev/davinci_manager \ --device=/dev/hisi_hdc \ --device=/dev/devmm_svm \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --network=bridge \ ${image_name} bash 进入容器。需要将${container_name}替换为实际的容器名称。 docker exec -it ${container_name} bash