云服务器内容精选
-
Step6 启动推理服务 配置需要使用的NPU卡编号。例如:实际使用的是第1张卡,此处填写“0”。 export ASCEND_RT_VISIBLE_DEVI CES =0 如果启动服务需要使用多张卡,例如:实际使用的是第1张和第2张卡,此处填写为“0,1”,以此类推。 export ASCEND_RT_VISIBLE_DEVICES=0,1 NPU卡编号可以通过命令npu-smi info查询。 配置环境变量。 export DEFER_DECODE=1 # 是否使用推理与Token解码并行;默认值为1表示开启并行,取值为0表示关闭并行。开启该功能会略微增加首Token时间,但可以提升推理吞吐量。 export DEFER_MS=10 # 延迟解码时间,默认值为10,单位为ms。将Token解码延迟进行的毫秒数,使得当次Token解码能与下一次模型推理并行计算,从而减少总推理时延。该参数需要设置环境变量DEFER_DECODE=1才能生效。 export USE_VOCAB_PARALLEL=1 # 是否使用词表并行;默认值为1表示开启并行,取值为0表示关闭并行。对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。 export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子是否使用高精度模式;默认值为0表示不开启。针对Qwen2-7B模型,必须开启此配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考使用AWQ量化或使用SmoothQuant量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/latest/getting_started/quickstart.html#offline-batched-inference。 方式一:通过OpenAI服务API接口启动服务 在llm_inference/ascend_vllm/vllm-gpu-0.4.2目录下通OpenAI服务API接口启动服务,具体操作命令如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.openai.api_server --model ${container_model_path} \ --max-num-seqs=256 \ --max-model-len=4096 \ --max-num-batched-tokens=4096 \ --dtype=float16 \ --tensor-parallel-size=1 \ --block-size=128 \ --host=${docker_ip} \ --port=8080 \ --gpu-memory-utilization=0.9 \ --trust-remote-code 方式二:通过vLLM服务API接口启动服务 在llm_inference/ascend_vllm/vllm-gpu-0.4.2目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server --model ${container_model_path} \ --max-num-seqs=256 \ --max-model-len=4096 \ --max-num-batched-tokens=4096 \ --dtype=float16 \ --tensor-parallel-size=1 \ --block-size=128 \ --host=${docker_ip} \ --port=8080 \ --gpu-memory-utilization=0.9 \ --trust-remote-code 推理服务基础参数说明如下: --model ${container_model_path}:模型地址,模型格式是HuggingFace的目录格式。即Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。若使用了量化功能,则使用推理模型量化章节转换后的权重。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config.json文件中的"seq_length"的值,否则推理预测会报错。config.json存在模型对应的路径下,例如:${container_work_dir}/chatglm3-6b/config.json。 --max-num-batched-tokens:prefill阶段,最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。 --tensor-parallel-size:模型并行数。取值需要和启动的NPU卡数保持一致,可以参考1。此处举例为1,表示使用单卡启动服务。 --block-size:kv-cache的block大小,推荐设置为128。当前仅支持64和128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 高阶参数说明: --enable-prefix-caching:如果prompt的公共前缀较长或者多轮对话场景下推荐使用prefix-caching特性。在推理服务启动脚本中添加此参数表示使用,不添加表示不使用。 --quantization:推理量化参数。当使用量化功能,则在推理服务启动脚本中增加该参数,若未使用量化功能,则无需配置。根据使用的量化方式配置,可选择awq或smoothquant方式。 --speculative-model ${container_draft_model_path}:投机草稿模型地址,模型格式是HuggingFace的目录格式。即Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。投机草稿模型为与--model入参同系列,但是权重参数远小于--model指定的模型。若未使用投机推理功能,则无需配置。 --num-speculative-tokens:投机推理小模型每次推理的token数。若未使用投机推理功能,则无需配置。参数--num-speculative-tokens需要和--speculative-model ${container_draft_model_path}同时使用。 --use-v2-block-manager:vllm启动时使用V2版本的BlockSpaceManger来管理KVCache索引,若不使用该功能,则无需配置。注意:若使用投机推理功能,必须开启此参数。 服务启动后,会打印如下类似信息。 server launch time cost: 15.443044185638428 s INFO: Started server process [2878]INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on http://0.0.0.0:8080 (Press CTRL+C to quit)
-
Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.906-xxx.zip和算子包AscendCloud-OPP-6.3.906-xxx.zip到主机中,包获取路径请参见表2。 将权重文件上传到DevServer机器中。权重文件的格式要求为Huggface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,需要上传训练后的权重文件和开源的原始权重文件。模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。
-
Step5 进入容器安装推理依赖软件 通过容器名称进入容器中。默认使用ma-user用户执行后续命令。 docker exec -it ${container_name} bash 上传代码和权重到宿主机时使用的是root用户,此处需要执行如下命令统一文件属主为ma-user用户。 #统一文件属主为ma-user用户 sudo chown -R ma-user:ma-group ${container_work_dir} # ${container_work_dir}:/home/ma-user/ws 容器内挂载的目录 #例如:sudo chown -R ma-user:ma-group /home/ma-user/ws 解压算子包并将相应算子安装到环境中。 unzip AscendCloud-OPP-*.zip pip install ascend_cloud_ops-1.0.0-py3-none-any.whl pip install cann_ops-1.0.0-py3-none-any.whl 解压软件推理代码并安装依赖包。安装过程需要连接互联网git clone,请确保容器环境可以访问公网。 unzip AscendCloud-LLM-*.zip cd llm_inference/ascend_vllm bash build.sh 运行完后,会安装适配昇腾的vllm-0.4.2版本。
-
Step1 检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 npu-smi info -t board -i 1 | egrep -i "software|firmware" #查看驱动和固件版本 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 驱动版本要求是23.0.5。如果不符合要求请参考安装固件和驱动章节升级驱动。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
-
Step4 启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ -v /etc/localtime:/etc/localtime \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /etc/ascend_install.info:/etc/ascend_install.info \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /var/log/npu/:/usr/slog \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 -v ${dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,dir为宿主机中文件目录,${container_work_dir}为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,在宿主机上可通过docker images查询得到。
-
模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.906中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl # 推理安装包 ├── build.sh # 推理构建脚本 ├── vllm_install.patch # 社区昇腾适配的补丁包 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──awq # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测 ├──opencompass.sh #运行opencompass脚本 ├──start.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字
-
支持的模型列表和权重文件 本方案支持vLLM的v0.4.2版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ https://huggingface.co/huggyllama/llama-65b 4 llama2-7b √ √ √ √ https://huggingface.co/meta-llama/Llama-2-7b-chat-hf 5 llama2-13b √ √ √ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct 8 llama3-70b √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct 9 yi-6b √ √ √ √ https://huggingface.co/01-ai/Yi-6B-Chat 10 yi-9b √ √ √ √ https://huggingface.co/01-ai/Yi-9B 11 yi-34b √ √ √ √ https://huggingface.co/01-ai/Yi-34B-Chat 12 deepseek-llm-7b √ x x x https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat 13 deepseek-coder-33b-instruct √ x x x https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct 14 deepseek-llm-67b √ x x x https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat 15 qwen-7b √ √ √ x https://huggingface.co/Qwen/Qwen-7B-Chat 16 qwen-14b √ √ √ x https://huggingface.co/Qwen/Qwen-14B-Chat 17 qwen-72b √ √ √ x https://huggingface.co/Qwen/Qwen-72B-Chat 18 qwen1.5-0.5b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat 19 qwen1.5-7b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-7B-Chat 20 qwen1.5-1.8b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat 21 qwen1.5-14b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-14B-Chat 22 qwen1.5-32b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-32B/tree/main 23 qwen1.5-72b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-72B-Chat 24 qwen1.5-110b √ √ √ x https://huggingface.co/Qwen/Qwen1.5-110B-Chat 25 qwen2-0.5b √ √ √ x https://huggingface.co/Qwen/Qwen2-0.5B-Instruct 26 qwen2-1.5b √ √ √ x https://huggingface.co/Qwen/Qwen2-1.5B-Instruct 27 qwen2-7b √ √ √ x https://huggingface.co/Qwen/Qwen2-7B-Instruct 28 qwen2-72b √ √ √ x https://huggingface.co/Qwen/Qwen2-72B-Instruct 29 baichuan2-7b √ x x x https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat 30 baichuan2-13b √ x x x https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat 31 gemma-2b √ x x x https://huggingface.co/google/gemma-2b 32 gemma-7b √ x x x https://huggingface.co/google/gemma-7b 33 chatglm2-6b √ x x x https://huggingface.co/THUDM/chatglm2-6b 34 chatglm3-6b √ x x x https://huggingface.co/THUDM/chatglm3-6b 35 glm-4-9b √ x x x https://huggingface.co/THUDM/glm-4-9b-chat 36 mistral-7b √ x x x https://huggingface.co/mistralai/Mistral-7B-v0.1 37 mixtral-8x7b √ x x x https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 说明:当前版本中yi-34b、qwen1.5-32b模型暂不支持单卡启动。
-
资源规格要求 本文档中的模型运行环境是ModelArts Lite的DevServer。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。
-
约束限制 本方案目前仅适用于部分企业客户。 本文档适配昇腾云ModelArts 6.3.906版本,请参考软件配套版本获取配套版本的软件包,请严格遵照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.4.2版本。 支持FP16和BF16数据类型推理。 DevServer驱动版本要求23.0.5。
-
镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240606190017-b881580 cann_8.0.rc2
-
软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表2所示。 表2 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格