云服务器内容精选

  • Spark使用说明 MRS 3.3.0-LTS及之后的版本中,Spark2x服务改名为Spark,服务包含的角色名也有差异,例如JobHistory2x变更为JobHistory。 相关涉及服务名称、角色名称的描述和操作请以实际版本为准。 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 相比于Hadoop,Spark拥有明显的性能优势。 父主题: 使用Spark/Spark2x
  • 概述 DLI 支持原生Spark的DataSource能力,并在其基础上进行了扩展,能够通过SQL语句或者Spark作业访问其他数据存储服务并导入、查询、分析处理其中的数据,目前支持的DLI跨源访问服务有: 表格存储服务 CloudTable, 云搜索服务 CSS,分布式缓存服务D CS ,文档数据库服务DDS, 数据仓库 服务 GaussDB (DWS), MapReduce服务 MRS,云数据库RDS等。使用DLI的跨源能力,需要先创建跨源连接。 管理控制台界面具体操作请参考《 数据湖探索 用户指南》。 使用Spark作业跨源访问数据源支持使用scala,pyspark和java三种语言进行开发。 表格存储 服务CloudTable相关介绍请参考《表格存储服务产品介绍》。 云搜索 服务 CSS 相关介绍请参考《云搜索服务产品介绍》。 分布式缓存服务DCS相关介绍请参考《分布式缓存服务产品介绍》。 文档数据库服务DDS相关介绍请参考《文档数据库服务产品介绍》。 数据仓库服务GaussDB(DWS)相关介绍请参考《数据仓库服务产品介绍》。 MapReduce服务MRS相关介绍请参考《MapReduce服务产品介绍》。 云数据库RDS相关介绍请参考《云数据库服务产品介绍》。 父主题: 使用Spark作业跨源访问数据源
  • 原因分析 问题1:Spark提交任务默认不会加载kafka的相关包,所以需要在启动命令中增加--jars来指定对应kafka版本的jar包 问题2:连接Kafka无法使用Spark的认证信息,需要将相关的认证使用JVM的参数设置进去。 问题3:Spark默认使用当前客户端的认证信息提交任务,也可以使用代码login的方式。但是这两种认证方式都无法更新任务使用的Token,当提交的时候生成的Token信息过期以后就无法再使用,因此报错。解决办法是使用--keytab和--principal将keytab文件和对应用户带入任务中。
  • 处理步骤 问题1:启动命令中增加--jars来指定对应kafka版本的jar包,一般是在Spark客户端目录/jars/streamingClient(0.8版本Kafka)和Spark客户端目录/jars/streamingClient010(0.10版本Kafka)。 问题2:参考指导文档编辑并运行程序。 问题3:使用--keytab和--principal将keytab文件和对应用户带入任务中。如果此处的keytab文件和之前Kafka的jaas.conf中配置的是同一个,则Spark会报一个文件多次上传的问题。解决办法是复制一份keytab文件,使得--files和--keytab上传不同的文件。
  • 处理步骤 检查用户执行命令./bin/spark-submit --class cn.interf.Test --master yarn-client 客户端安装目录/Spark/spark1-1.0-SNAPSHOT.jar;,排查是否引入了非法字符。 如果是,修改非法字符,重新执行命令。 重新执行命令后,发生其他错误,查看该jar包的属主属组信息,发现全为root。 修改jar包的属主属组为omm:wheel,重新执行成功。
  • 运行任务 登录Spark客户端节点,执行如下命令: source 客户端安装目录/bigdata_env source 客户端安装目录/Hudi/component_env 编译构建样例代码后可以使用spark-submit提交命令,执行命令后会依次执行写入、更新、查询、删除等操作: 运行Java样例程序: spark-submit --class com.huawei.bigdata.hudi.examples.HoodieWriteClientExample /opt/example/hudi-java-examples-1.0.jar hdfs://hacluster/tmp/example/hoodie_java hoodie_java 其中:“/opt/example/hudi-java-examples-1.0.jar”为jar包路径,“hdfs://hacluster/tmp/example/hoodie_java”为Hudi表的存储路径,“ hoodie_java”为Hudi表的表名。 运行Scala样例程序: spark-submit --class com.huawei.bigdata.hudi.examples.HoodieDataSourceExample /opt/example/hudi-scala-examples-1.0.jar hdfs://hacluster/tmp/example/hoodie_scala hoodie_scala 其中:“/opt/example/hudi-scala-examples-1.0.jar”为jar包路径,“hdfs://hacluster/tmp/example/hoodie_scala”为Hudi表的存储路径,“ hoodie_Scala”为Hudi表的表名。 运行Python样例程序: spark-submit /opt/example/HudiPythonExample.py hdfs://hacluster/tmp/huditest/example/python hudi_trips_cow 其中:“hdfs://hacluster/tmp/huditest/example/python”为Hudi表的存储路径,“ hudi_trips_cow”为Hudi表的表名。
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。 运行Python样例代码无需通过Maven打包,只需要上传user.keytab、krb5.conf 文件到客户端所在服务器上。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/example/” )下。
  • 运行任务 登录Spark客户端节点,执行如下命令: source 客户端安装目录/bigdata_env source 客户端安装目录/Hudi/component_env 编译构建样例代码后可以使用spark-submit提交命令,执行命令后会依次执行写入、更新、查询、删除等操作: 运行Java样例程序: spark-submit --class com.huawei.bigdata.hudi.examples.HoodieWriteClientExample /opt/example/hudi-java-examples-1.0.jar hdfs://hacluster/tmp/example/hoodie_java hoodie_java 其中:“/opt/example/hudi-java-examples-1.0.jar”为jar包路径,“hdfs://hacluster/tmp/example/hoodie_java”为Hudi表的存储路径,“ hoodie_java”为Hudi表的表名。 运行Scala样例程序: spark-submit --class com.huawei.bigdata.hudi.examples.HoodieDataSourceExample /opt/example/hudi-scala-examples-1.0.jar hdfs://hacluster/tmp/example/hoodie_scala hoodie_scala 其中:“/opt/example/hudi-scala-examples-1.0.jar”为jar包路径,“hdfs://hacluster/tmp/example/hoodie_scala”为Hudi表的存储路径,“ hoodie_Scala”为Hudi表的表名。 运行Python样例程序: spark-submit /opt/example/HudiPythonExample.py hdfs://hacluster/tmp/huditest/example/python hudi_trips_cow 其中:“hdfs://hacluster/tmp/huditest/example/python”为Hudi表的存储路径,“ hudi_trips_cow”为Hudi表的表名。
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。 运行Python样例代码无需通过Maven打包,只需要上传user.keytab、krb5.conf 文件到客户端所在服务器上。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/example/” )下。