云服务器内容精选

  • 导入Workflow Data包 在编写Workflow过程中,相关对象都通过Workflow包进行导入,梳理如下: from modelarts import workflow as wf Data包相关内容导入: wf.data.DatasetTypeEnum wf.data.Dataset wf.data.DatasetVersionConfig wf.data.DatasetPlaceholder wf.data.ServiceInputPlaceholder wf.data.ServiceData wf.data.ServiceUpdatePlaceholder wf.data.DataTypeEnum wf.data.ModelData wf.data.GalleryModel wf.data.OBSPath wf.data.OBSOutputConfig wf.data.OBSPlaceholder wf.data.SWRImage wf.data.SWRImagePlaceholder wf.data.Storage wf.data.InputStorage wf.data.OutputStorage wf.data.LabelTask wf.data.LabelTaskPlaceholder wf.data.LabelTaskConfig wf.data.LabelTaskTypeEnum wf.data.MetricsConfig wf.data.TripartiteServiceConfig wf.data.DataConsumptionSelector policy包相关内容导入: wf.policy.Policy wf.policy.Scene steps包相关内容导入: wf.steps.MetricInfo wf.steps.Condition wf.steps.ConditionTypeEnum wf.steps.ConditionStep wf.steps.LabelingStep wf.steps.LabelingInput wf.steps.LabelingOutput wf.steps.LabelTaskProperties wf.steps.ImportDataInfo wf.steps.DataOriginTypeEnum wf.steps.DatasetImportStep wf.steps.DatasetImportInput wf.steps.DatasetImportOutput wf.steps.AnnotationFormatConfig wf.steps.AnnotationFormatParameters wf.steps.AnnotationFormatEnum wf.steps.Label wf.steps.ImportTypeEnum wf.steps.LabelFormat wf.steps.LabelTypeEnum wf.steps.ReleaseDatasetStep wf.steps.ReleaseDatasetInput wf.steps.ReleaseDatasetOutput wf.steps.CreateDatasetStep wf.steps.CreateDatasetInput wf.steps.CreateDatasetOutput wf.steps.DatasetProperties wf.steps.SchemaField wf.steps.ImportConfig wf.steps.JobStep wf.steps.JobMetadata wf.steps.JobSpec wf.steps.JobResource wf.steps.JobTypeEnum wf.steps.JobEngine wf.steps.JobInput wf.steps.JobOutput wf.steps.LogExportPath wf.steps.MrsJobStep wf.steps.MrsJobInput wf.steps.MrsJobOutput wf.steps.MrsJobAlgorithm wf.steps.ModelStep wf.steps.ModelInput wf.steps.ModelOutput wf.steps.ModelConfig wf.steps.Template wf.steps.TemplateInputs wf.steps.ServiceStep wf.steps.ServiceInput wf.steps.ServiceOutput wf.steps.ServiceConfig wf.steps.StepPolicy Workflow包相关内容导入: wf.workflow wf.Subgraph wf.Placeholder wf.PlaceholderType wf.AlgorithmParameters wf.BaseAlgorithm wf.Algorithm wf.AIGalleryAlgorithm wf.resource wf.SystemEnv wf.add_whitelist_users wf.delete_whitelist_users
  • 编写工作流代码示例 以图像分类为例,阐述机器学习端到端场景的完整开发过程,主要包括数据标注、模型训练、服务部署等过程。您需要准备如下算法和数据集。 准备一个图像分类算法(或者可以直接从AI Gallery搜索订阅一个“图像分类-ResNet_v1_50”算法)。 准备一个图片类型的数据集,请参考准备数据集。可从AI Gallery直接下载(例如:8类常见生活垃圾图片数据集)。 from modelarts import workflow as wf # 定义统一存储对象管理输出目录 output_storage = wf.data.OutputStorage(name="output_storage", description="输出目录统一配置") # 创建标注任务 data = wf.data.DatasetPlaceholder(name="input_data") label_step = wf.steps.LabelingStep( name="labeling", title="数据标注", properties=wf.steps.LabelTaskProperties( task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, task_name=wf.Placeholder(name="task_name", placeholder_type=wf.PlaceholderType.STR, description="请输入一个只包含大小写字母、数字、下划线、中划线或者中文字符的名称。填写已有标注任务名称,则直接使用该标注任务;填写新标注任务名称,则自动创建新的标注任务") ), inputs=wf.steps.LabelingInput(name="labeling_input", data=data), outputs=wf.steps.LabelingOutput(name="labeling_output"), ) # 对标注任务进行发布 release_step = wf.steps.ReleaseDatasetStep( name="release", title="数据集版本发布", inputs=wf.steps.ReleaseDatasetInput(name="input_data", data=label_step.outputs["labeling_output"].as_input()), outputs=wf.steps.ReleaseDatasetOutput(name="labeling_output", dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio="0.8")), depend_steps=[label_step] ) # 创建训练作业 job_step = wf.steps.JobStep( name="training_job", title="图像分类训练", algorithm=wf.AIGalleryAlgorithm( subscription_id="***", # 订阅算法的ID,自行补充 item_version_id="10.0.0", # 订阅算法的版本ID parameters=[ wf.AlgorithmParameters(name="task_type", value="image_classification_v2"), wf.AlgorithmParameters(name="model_name", value="resnet_v1_50"), wf.AlgorithmParameters(name="do_train", value="True"), wf.AlgorithmParameters(name="do_eval_along_train", value="True"), wf.AlgorithmParameters(name="variable_update", value="horovod"), wf.AlgorithmParameters(name="learning_rate_strategy", value=wf.Placeholder(name="learning_rate_strategy", placeholder_type=wf.PlaceholderType.STR, default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")), wf.AlgorithmParameters(name="batch_size", value=wf.Placeholder(name="batch_size", placeholder_type=wf.PlaceholderType.INT, default=64, description="每步训练的图片数量(单卡)")), wf.AlgorithmParameters(name="eval_batch_size", value=wf.Placeholder(name="eval_batch_size", placeholder_type=wf.PlaceholderType.INT, default=64, description="每步验证的图片数量(单卡)")), wf.AlgorithmParameters(name="evaluate_every_n_epochs", value=wf.Placeholder(name="evaluate_every_n_epochs", placeholder_type=wf.PlaceholderType.FLOAT, default=1.0, description="每训练n个epoch做一次验证")), wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60, description="保存模型的频率(单位:s)")), wf.AlgorithmParameters(name="save_summary_steps", value=wf.Placeholder(name="save_summary_steps", placeholder_type=wf.PlaceholderType.INT, default=10, description="保存summary的频率(单位:步)")), wf.AlgorithmParameters(name="log_every_n_steps", value=wf.Placeholder(name="log_every_n_steps", placeholder_type=wf.PlaceholderType.INT, default=10, description="打印日志的频率(单位:步)")), wf.AlgorithmParameters(name="do_data_cleaning", value=wf.Placeholder(name="do_data_cleaning", placeholder_type=wf.PlaceholderType.STR, default="True", description="是否进行数据清洗, 数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf.Placeholder(name="use_fp16", placeholder_type=wf.PlaceholderType.STR, default="True", description="是否使用混合精度, 混合精度可以加速训练,但是可能会造成一点精度损失,如果对精度无极严格的要求,建议开启")), wf.AlgorithmParameters(name="xla_compile", value=wf.Placeholder(name="xla_compile", placeholder_type=wf.PlaceholderType.STR, default="True", description="是否开启xla编译,加速训练,默认启用")), wf.AlgorithmParameters(name="data_format", value=wf.Placeholder(name="data_format", placeholder_type=wf.PlaceholderType.ENUM, default="NCHW", enum_list=["NCHW", "NHWC"], description="输入数据类型,NHWC表示channel在最后,NCHW表channel在最前,默认值NCHW(速度有提升)")), wf.AlgorithmParameters(name="best_model", value=wf.Placeholder(name="best_model", placeholder_type=wf.PlaceholderType.STR, default="True", description="是否在训练过程中保存并使用精度最高的模型,而不是最新的模型。默认值True,保存最优模型。在一定误差范围内,最优模型会保存最新的高精度模型")), wf.AlgorithmParameters(name="jpeg_preprocess", value=wf.Placeholder(name="jpeg_preprocess", placeholder_type=wf.PlaceholderType.STR, default="True", description="是否使用jpeg预处理加速算子(仅支持jpeg格式数据),可加速数据读取,提升性能,默认启用。如果数据格式不是jpeg格式,开启数据清洗功能即可使用")) ] ), inputs=[wf.steps.JobInput(name="data_url", data=release_step.outputs["labeling_output"].as_input())], outputs=[wf.steps.JobOutput(name="train_url", obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/train_output/")))], spec=wf.steps.JobSpec( resource=wf.steps.JobResource( flavor=wf.Placeholder(name="training_flavor", placeholder_type=wf.PlaceholderType.JSON, description="训练资源规格" ) ) ), depend_steps=[release_step] ) model_name = wf.Placeholder(name="model_name", placeholder_type=wf.PlaceholderType.STR, description="请输入一个1至64位且只包含大小写字母、中文、数字、中划线或者下划线的名称。工作流第一次运行建议填写新的模型名称,后续运行会自动在该模型上新增版本") # 模型注册 model_step = wf.steps.ModelStep( name="model_step", title="模型注册", inputs=[wf.steps.ModelInput(name="model_input", data=job_step.outputs["train_url"].as_input())], outputs=[wf.steps.ModelOutput(name="model_output", model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow"))], depend_steps=[job_step] ) # 服务部署 service_step = wf.steps.ServiceStep( name="service_step", title="服务部署", inputs=[wf.steps.ServiceInput(name="service_input", data=wf.data.ServiceInputPlaceholder(name="service_model", model_name=model_name))], outputs=[wf.steps.ServiceOutput(name="service_output")], depend_steps=[model_step] ) # 构建工作流对象 workflow = wf.Workflow(name="image-classification-ResNeSt", desc="this is a image classification workflow", steps=[label_step, release_step, job_step, model_step, service_step], storages=[output_storage] ) 在工作流编写完成后可自行进行发布等操作。
  • Data 数据对象用于节点的输入,主要可分为以下三种类型: 真实的数据对象,在工作流构建时直接指定: Dataset:用于定义已有的数据集,常用于数据标注,模型训练等场景 LabelTask: 用于定义已有的标注任务,常用于数据标注,数据集版本发布等场景 OBSPath:用于定义指定的OBS路径,常用于模型训练,数据集导入,模型导入等场景 ServiceData:用于定义一个已有的服务,只用于服务更新的场景 SWRImage:用于定义已有的SWR路径,常用于模型注册场景 GalleryModel:用于定义从gallery订阅的模型,常用于模型注册场景 占位符式的数据对象,在工作流运行时指定: DatasetPlaceholder:用于定义在运行时需要确定的数据集,对应Dataset对象,常用于数据标注,模型训练等场景 LabelTaskPlaceholder:用于定义在运行时需要确定的标注任务,对应LabelTask对象,常用于数据标注,数据集版本发布等场景 OBSPlaceholder:用于定义在运行时需要确定的OBS路径,对应OBSPath对象,常用于模型训练,数据集导入,模型导入等场景 ServiceUpdatePlaceholder:用于定义在运行时需要确定的已有服务,对应ServiceData对象,只用于服务更新的场景 SWRImagePlaceholder:用于定义在运行时需要确定的SWR路径,对应SWRImage对象,常用于模型注册场景 ServiceInputPlaceholder:用于定义在运行时需要确定服务部署所需的模型相关信息,只用于服务部署及服务更新场景 DataSelector:支持多种数据类型的选择,当前仅支持在JobStep节点中使用(仅支持选择OBS或者数据集) 数据选择对象: DataConsumptionSelector:用于在多个依赖节点的输出中选择一个有效输出作为数据输入,常用于存在条件分支的场景中(在构建工作流时未能确定数据输入来源为哪个依赖节点的输出,需根据依赖节点的实际执行情况进行自动选择) 表4 Dataset 属性 描述 是否必填 数据类型 dataset_name 数据集名称 是 str version_name 数据集版本名称 否 str 示例: example = Dataset(dataset_name = "**", version_name = "**") # 通过ModelArts的数据集,获取对应的数据集名称及相应的版本名称。 当Dataset对象作为节点的输入时,需根据业务需要自行决定是否填写version_name字段(比如LabelingStep、ReleaseDatasetStep不需要填写,JobStep必须填写)。 表5 LabelTask 属性 描述 是否必填 数据类型 dataset_name 数据集名称 是 str task_name 标注任务名称 是 str 示例: example = LabelTask(dataset_name = "**", task_name = "**") # 通过ModelArts的新版数据集,获取对应的数据集名称及相应的标注任务名称 表6 OBSPath 属性 描述 是否必填 数据类型 obs_path OBS路径 是 str,Storage 示例: example = OBSPath(obs_path = "**") # 通过 对象存储服务 ,获取已存在的OBS路径值 表7 ServiceData 属性 描述 是否必填 数据类型 service_id 服务的ID 是 str 示例: example = ServiceData(service_id = "**") # 通过ModelArts的在线服务,获取对应服务的服务ID,描述指定的在线服务。用于服务更新的场景。 表8 SWRImage 属性 描述 是否必填 数据类型 swr_path 容器镜像的SWR路径 是 str 示例: example = SWRImage(swr_path = "**") # 容器镜像地址,用于模型注册节点的输入 表9 GalleryModel 属性 描述 是否必填 数据类型 subscription_id 订阅模型的订阅ID 是 str version_num 订阅模型的版本号 是 str 示例: example = GalleryModel(subscription_id="**", version_num="**") # 订阅的模型对象,用于模型注册节点的输入 表10 DatasetPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str data_type 数据类型 否 DataTypeEnum delay 标志数据对象是否在节点运行时配置,默认为False 否 bool default 数据对象的默认值 否 Dataset 示例: example = DatasetPlaceholder(name = "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION) # 数据集对象的占位符形式,可以通过指定data_type限制数据集的数据类型 表11 OBSPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str object_type 表示OBS对象类型,仅支持"file"或者"directory" 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool default 数据对象的默认值 否 OBSPath 示例: example = OBSPlaceholder(name = "**", object_type = "directory" ) # OBS对象的占位符形式,object_type只支持两种类型, "file" 以及 "directory" 表12 LabelTaskPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str task_type 表示标注任务的类型 否 LabelTaskTypeEnum delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = LabelTaskPlaceholder(name = "**") # LabelTask对象的占位符形式 表13 ServiceUpdatePlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = ServiceUpdatePlaceholder(name = "**") # ServiceData对象的占位符形式,用于服务更新节点的输入 表14 SWRImagePlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = SWRImagePlaceholder(name = "**" ) # SWRImage对象的占位符形式,用于模型注册节点的输入 表15 ServiceInputPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str model_name 模型名称 是 str或者Placeholder model_version 模型版本 否 str envs 环境变量 否 dict delay 服务部署相关信息是否在节点运行时配置,默认为True 否 bool 示例: example = ServiceInputPlaceholder(name = "**" , model_name = "model_name") # 用于服务部署或者服务更新节点的输入 表16 DataSelector 属性 描述 是否必填 数据类型 name 名称 是 str data_type_list 支持的数据类型列表,当前仅支持obs、dataset 是 list delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = DataSelector(name = "**" ,data_type_list=["obs", "dataset"]) # 用于作业类型节点的输入 表17 DataConsumptionSelector 属性 描述 是否必填 数据类型 data_list 依赖节点的输出数据对象列表 是 list 示例: example = DataConsumptionSelector(data_list=[step1.outputs["step1_output_name"].as_input(), step2.outputs["step2_output_name"].as_input()]) # 从step1以及step2中选择有效输出作为输入,当step1跳过无输出,step2执行有输出时,将step2的有效输出作为输入(需保证data_list中同时只有一个有效输出)
  • Workflow Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 图1 Workflow介绍 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序,示例中的工作流在启动后将从左往右顺序执行。DAG也支持多分支结构,用户可根据实际场景进行灵活设计,在多分支场景下,并行分支的节点支持并行运行,具体请参考配置多分支节点数据章节。 表1 Workflow 属性 描述 是否必填 数据类型 name 工作流的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64位字符 是 str desc 工作流的描述信息 是 str steps 工作流包含的节点列表 是 list[Step] storages 统一存储对象列表 否 Storage或者list[Storage] policy 工作流的配置策略,主要用于部分运行场景 否 Policy
  • Step Step是组成Workflow的最小单元,体现在DAG中就是一个一个的节点,不同的Step类型承载了不同的服务能力,主要构成如下。 表2 Step 属性 描述 是否必填 数据类型 name 节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符 是 str title 节点的标题信息,主要用于在DAG中的展示,如果该字段未填写,则默认使用name进行展示 否 str step_type 节点的类型,决定了节点的功能 是 enum inputs 节点的输入列表 否 AbstractInput或者list[AbstractInput] outputs 节点的输出列表 否 AbstractOutput或者list[AbstractOutput] properties 节点的属性信息 否 dict policy 节点的执行策略,主要包含节点调度运行的时间间隔、节点执行的超时时间、以及节点执行是否跳过的相关配置 否 StepPolicy depend_steps 依赖节点的列表,该字段决定了DAG的结构,也决定了节点执行的顺序 否 Step或者list[Step] 表3 StepPolicy 属性 描述 是否必填 数据类型 poll_interval_seconds 节点调度时间周期,默认为1秒 是 str max_execution_minutes 节点运行超时时间,默认为10080分钟,即7天 是 str skip_conditions 节点是否跳过的条件列表 否 Condition或者Condition列表 Step是节点的超类,主要用于概念上的承载,用户不直接使用。根据功能的不同,构建了不同类型的节点,主要包括CreateDatasetStep、LabelingStep、DatasetImportStep、ReleaseDatasetStep、JobStep、ModelStep、ServiceStep、ConditionStep等,详情请见创建Workflow节点。