云服务器内容精选

  • 命令格式 set hoodie.archive.file.cleaner.policy = KEEP_ARCHIVED_FILES_BY_SIZE; set hoodie.archive.file.cleaner.size.retained = 5368709120; run cleanarchive on tableIdentifier/tablelocation; set hoodie.archive.file.cleaner.policy = KEEP_ARCHIVED_FILES_BY_DAYS; set hoodie.archive.file.cleaner.days.retained = 30; run cleanarchive on tableIdentifier/tablelocation;
  • 参数描述 表1 参数描述 参数 描述 tableIdentifier Hudi表的名称。 tablelocation Hudi表的存储路径。 hoodie.archive.file.cleaner.policy 清理归档文件的策略:目前仅支持KEEP_ARCHIVED_FILES_BY_SIZE和KEEP_ARCHIVED_FILES_BY_DAYS两种策略,默认策略为KEEP_ARCHIVED_FILES_BY_DAYS。 KEEP_ARCHIVED_FILES_BY_SIZE策略可以设置归档文件占用的存储空间大小 KEEP_ARCHIVED_FILES_BY_DAYS策略可以清理超过某个时间点之外的归档文件 hoodie.archive.file.cleaner.size.retained 当清理策略为KEEP_ARCHIVED_FILES_BY_SIZE时,该参数可以设置保留多少字节大小的归档文件,默认值5368709120字节(5G)。 hoodie.archive.file.cleaner.days.retained 当清理策略为KEEP_ARCHIVED_FILES_BY_DAYS时,该参数可以设置保留多少天以内的归档文件,默认值30(天)。
  • 注意事项 写入模式:Hudi对于设置了主键的表支持三种写入模式,用户可以设置参数hoodie.sql.insert.mode来指定Insert模式,默认为upsert。 strict模式,Insert语句将保留COW表的主键唯一性约束,不允许重复记录。如果在插入过程中已经存在记录,则会为COW表执行HoodieDuplicateKeyException;对于MOR表,该模式与upsert模式行为一致。 non-strict模式,对主键表采用insert处理。 upsert模式,对于主键表的重复值进行更新操作。 在执行spark-sql时,用户可以设置“hoodie.sql.bulk.insert.enable = true”和“hoodie.sql.insert.mode = non-strict”来开启bulk insert作为Insert语句的写入方式。 也可以通过直接设置hoodie.datasource.write.operation的方式控制insert语句的写入方式,包括bulk_insert、insert、upsert。使用这种方式控制hoodie写入,需要注意执行完SQL后,必须执行reset hoodie.datasource.write.operation;重置Hudi的写入方式,否则该参数会影响其他SQL的执行。
  • 示例 insert into h0 select 1, 'a1', 20; -- insert static partition insert into h_p0 partition(dt = '2021-01-02') select 1, 'a1'; -- insert dynamic partition insert into h_p0 select 1, 'a1', dt; -- insert dynamic partition insert into h_p1 select 1 as id, 'a1', '2021-01-03' as dt, '19' as hh; -- insert overwrite table insert overwrite table h0 select 1, 'a1', 20; -- insert overwrite table with static partition insert overwrite h_p0 partition(dt = '2021-01-02') select 1, 'a1'; -- insert overwrite table with dynamic partition insert overwrite table h_p1 select 2 as id, 'a2', '2021-01-03' as dt, '19' as hh;