云服务器内容精选

  • 功能简介 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性,将那些需进行关联操作的文件存放在相同数据节点上,在进行关联操作计算时避免了到别的数据节点上获取数据,大大降低网络带宽的占用。 在使用Colocation功能之前,建议用户对Colocation的内部机制有一定了解,包括: • Colocation分配节点原理 • 扩容与Colocation分配 • Colocation与数据节点容量 Colocation分配节点原理 Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的排在前面,优先选择排在前面的节点。每次选择一个节点后,计数加1,并重新排序,选择后续的节点。 扩容与Colocation分配 集群扩容之后,为了平衡地使用所有的数据节点,使新的数据节点的分配频率与旧的数据节点趋于一致,有如下两种策略可以选择,如表1所示。 表1 分配策略 编号 策略 说明 1 删除旧的locators,为集群中所有数据节点重新创建locators。 在未扩容之前分配的locators,平衡的使用了所有数据节点。当扩容后,新加入的数据节点并未分配到已经创建的locators中,所以使用Colocation来存储数据的时候,只会往旧的数据节点存储数据。 由于locators与特定数据节点相关,所以当集群进行扩容的时候,就需要对Colocation的locators分配进行重新规划。 2 创建一批新的locators,并重新规划数据存放方式。 旧的locators使用的是旧的数据节点,而新创建的locators偏重使用新的数据节点,所以需要根据实际业务对数据的使用需求,重新规划locators的使用。 一般的,建议用户在进行集群扩容之后采用策略一来重新分配locators,可以避免数据偏重使用新的数据节点。 Colocation与数据节点容量 由于使用Colocation进行存储数据的时候,会固定存储在指定的locator所对应的数据节点上面,所以如果不对locator进行规划,会造成数据节点容量不均衡。下面总结了保证数据节点容量均衡的两个主要的使用原则,如表2所示。 表2 使用原则 编号 使用原则 说明 1 所有的数据节点在locators中出现的频率一样。 如何保证频率一样:假如数据节点有N个,则创建locators的数量应为N的整数倍(N个、2N个……)。 2 对于所有locators的使用需要进行合理的数据存放规划,让数据均匀的分布在这些locators中。 无 HDFS的二次开发过程中,可以获取DFSColocationAdmin和DFSColocationClient实例,进行从location创建group、删除group、写文件和删除文件的操作。 使用Colocation功能,用户指定了DataNode,会造成某些节点上数据量很大。数据倾斜严重,导致HDFS写任务失败。 由于数据倾斜,导致MapReduce只会在某几个节点访问,造成这些节点上负载很大,而其他节点闲置。 针对单个应用程序任务,只能使用一次DFSColocationAdmin和DFSColocationClient实例。如果每次对文件系统操作都获取此实例,会创建过多HDFS链接,消耗HDFS资源。 Colocation提供了文件同分布的功能,执行集群balancer或mover操作时,会移动数据块,使Colocation功能失效。因此,使用Colocation功能时,建议将HDFS配置项dfs.datanode.block-pinning.enabled设置为true,此时执行集群Balancer或Mover操作时,使用Colocation写入的文件将不会被移动,从而保证了文件同分布。
  • 代码样例 完整样例代码可参考com.huawei.bigdata.hdfs.examples.ColocationExample。 在运行Colocation工程时,需要设置运行用户,此用户需绑定supergroup用户组。 在运行Colocation工程时,HDFS的配置项fs.defaultFS不能配置为viewfs://ClusterX。 初始化 使用Colocation前需要设置运行用户。 private static void init() throws IOException { // 设置用户,若用户没有设置HADOOP_USER_NAME,则使用USER if (System.getenv("HADOOP_USER_NAME") == null && System.getProperty("HADOOP_USER_NAME") == null) { System.setProperty("HADOOP_USER_NAME", USER); } } 获取实例 样例:Colocation的操作使用DFSColocationAdmin和DFSColocationClient实例,在进行创建group等操作前需获取实例。 dfsAdmin = new DFSColocationAdmin(conf); dfs = new DFSColocationClient(); dfs.initialize(URI.create(conf.get("fs.defaultFS")), conf); 创建group 样例:创建一个gid01组,组中包含3个locator。 /** * 创建group * * @throws java.io.IOException */ private static void createGroup() throws IOException { dfsAdmin.createColocationGroup(COLOCATION_GROUP_GROUP01, Arrays.asList(new String[] { "lid01", "lid02", "lid03" })); } 写文件,写文件前必须创建对应的group 样例:写入testfile.txt文件。 /** * 创建并写入文件 * * @throws java.io.IOException */ private static void put() throws IOException { FSDataOutputStream out = dfs.create(new Path(TESTFILE_TXT), true, COLOCATION_GROUP_GROUP01, "lid01"); // 代写入HDFS的数据 byte[] readBuf = "Hello World".getBytes("UTF-8"); out.write(readBuf, 0, readBuf.length); out.close(); } 删除文件 样例:删除testfile.txt文件。 /** * 删除文件 * * @throws java.io.IOException */ @SuppressWarnings("deprecation") private static void delete() throws IOException { dfs.delete(new Path(TESTFILE_TXT)); } 删除group 样例:删除gid01。 /** * 删除group * * @throws java.io.IOException */ private static void deleteGroup() throws IOException { dfsAdmin.deleteColocationGroup(COLOCATION_GROUP_GROUP01); }
  • HDFS初始化方法 HDFS初始化是指在使用HDFS提供的API之前,需要做的必要工作。 大致过程为:加载HDFS服务配置文件,并进行Kerberos安全认证,认证通过后再实例化Filesystem,之后使用HDFS的API。此处Kerberos安全认证需要使用到的keytab文件,请提前准备。 正确示例: private void init() throws IOException { Configuration conf = new Configuration(); // 读取配置文件 conf.addResource("user-hdfs.xml"); // 安全模式下,先进行安全认证 if ("kerberos".equalsIgnoreCase(conf.get("hadoop.security.authentication"))) { String PRINCIPAL = "username.client.kerberos.principal"; String KEYTAB = "username.client.keytab.file"; // 设置keytab密钥文件 conf.set(KEYTAB, System.getProperty("user.dir") + File.separator + "conf" + File.separator + conf.get(KEYTAB)); // 设置kerberos配置文件路径 */ String krbfilepath = System.getProperty("user.dir") + File.separator + "conf" + File.separator + "krb5.conf"; System.setProperty("java.security.krb5.conf", krbfilepath); // 进行登录认证 */ SecurityUtil.login(conf, KEYTAB, PRINCIPAL); } // 实例化文件系统对象 fSystem = FileSystem.get(conf); }
  • HDFS上传本地文件 通过FileSystem.copyFromLocalFile(Path src,Patch dst)可将本地文件上传到HDFS的指定位置上,其中src和dst均为文件的完整路径。 正确示例: public class CopyFile { public static void main(String[] args) throws Exception { Configuration conf=new Configuration(); FileSystem hdfs=FileSystem.get(conf); //本地文件 Path src =new Path("D:\\HebutWinOS"); //HDFS为止 Path dst =new Path("/"); hdfs.copyFromLocalFile(src, dst); System.out.println("Upload to"+conf.get("fs.default.name")); FileStatus files[]=hdfs.listStatus(dst); for(FileStatus file:files){ System.out.println(file.getPath()); } } }
  • 查看HDFS文件的最后修改时间 通过FileSystem.getModificationTime()可查看指定HDFS文件的修改时间。 正确示例: public static void main(String[] args) throws Exception { Configuration conf=new Configuration(); FileSystem hdfs=FileSystem.get(conf); Path fpath =new Path("/user/hadoop/test/file1.txt"); FileStatus fileStatus=hdfs.getFileStatus(fpath); long modiTime=fileStatus.getModificationTime(); System.out.println("file1.txt的修改时间是"+modiTime); }
  • HDFS创建文件 通过"FileSystem.mkdirs(Path f)"可在HDFS上创建文件夹,其中f为文件夹的完整路径。 正确示例: public class CreateDir { public static void main(String[] args) throws Exception{ Configuration conf=new Configuration(); FileSystem hdfs=FileSystem.get(conf); Path dfs=new Path("/TestDir"); hdfs.mkdirs(dfs); } }
  • 多线程安全登录方式 如果有多线程进行login的操作,当应用程序第一次登录成功后,所有线程再次登录时应该使用relogin的方式。 login的代码样例: private Boolean login(Configuration conf){ boolean flag = false; UserGroupInformation.setConfiguration(conf); try { UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB)); System.out.println("UserGroupInformation.isLoginKeytabBased(): " +UserGroupInformation.isLoginKeytabBased()); flag = true; } catch (IOException e) { e.printStackTrace(); } return flag; } relogin的代码样例: public Boolean relogin(){ boolean flag = false; try { UserGroupInformation.getLoginUser().reloginFromKeytab(); System.out.println("UserGroupInformation.isLoginKeytabBased(): " +UserGroupInformation.isLoginKeytabBased()); flag = true; } catch (IOException e) { e.printStackTrace(); } return flag; } 多次重复登录会导致后建立的会话对象覆盖掉之前登录建立的,将会导致之前建立的会话无法被维护监控,最终导致会话超期后部分功能不可用。
  • MapReduce中间文件存放路径 MapReduce默认中间文件夹存放路径只有一个,${hadoop.tmp.dir}/mapred/local,建议修改为每个磁盘下均可存放中间文件。 例如:/hadoop/hdfs/data1/mapred/local、/hadoop/hdfs/data2/mapred/local、/hadoop/hdfs/data3/mapred/local等,不存在的目录会自动忽略。
  • HDFS提高读取写入性能方式 写入数据流程:HDFS Client收到业务数据后,从NameNode获取到数据块编号、位置信息后,联系DataNode,并将需要写入数据的DataNode建立起流水线,完成后,客户端再通过自有协议写入数据到Datanode1,再有DataNode1复制到DataNode2、DataNode3(三备份)。写完的数据,将返回确认信息给HDFS Client。 合理设置块大小,如设置dfs.blocksize为 268435456(即256MB)。 对于一些不可能重用的大数据,缓存在操作系统的缓存区是无用的。可将以下两参数设置为false: dfs.datanode.drop.cache.behind.reads和dfs.datanode.drop.cache.behind.writes
  • HDFS文件操作API概述 Hadoop中关于文件操作类基本上全部是在“org.apache.hadoop.fs”包中,这些API能够支持的操作包含:打开文件,读写文件,删除文件等。Hadoop类库中最终面向用户提供的接口类是FileSystem,该类是个抽象类,只能通过来类的get方法得到具体类。get方法存在几个重载版本,常用的是这个: static FileSystem get(Configuration conf); 该类封装了几乎所有的文件操作,例如mkdir,delete等。综上基本可以得出操作文件的程序库框架: operator() { 得到Configuration对象 得到FileSystem对象 进行文件操作 }
  • HDFS需要开启DataNode数据存储路径 DataNode默认存储路径配置为:${BIGDATA_DATA_HOME}/hadoop/dataN/dn/datadir(N≥1),N为数据存放的目录个数。 例如:${BIGDATA_DATA_HOME}/hadoop/data1/dn/datadir、${BIGDATA_DATA_HOME}/hadoop/data2/dn/datadir 设置后,数据会存储到节点上每个挂载磁盘的对应目录下面。
  • 解决方法 找到重启前的主NameNode,进入其数据目录(查看配置项“dfs.namenode.name.dir”可获取,例如/srv/BigData/namenode/current),得到最新的FSImage文件的序号。一般如下: 查看各JournalNode的数据目录(查看配置项“dfs.journalnode.edits.dir”可获取,例如/srv/BigData/journalnode/hacluster/current),查看序号从第一部获取到的序号开始的edits文件,看是否有不连续的情况(即前一个edits文件的最后一个序号 和 后一个edits文件的第一个序号 不是连续的,如下图中的edits_0000000000013259231-0000000000013259237就和后一个edits_0000000000013259239-0000000000013259246就是不连续的)。 如果有这种不连续的edits文件,则需要查看其它的JournalNode的数据目录或NameNode数据目录中,有没有连续的该序号相关的连续的edits文件。如果可以找到,复制一个连续的片段到该JournalNode。 如此把所有的不连续的edits文件全部都修复。 重启NameNode,观察是否成功。如还是失败,请联系技术支持。
  • 原因分析 DataNode的数据接受器不可用。 此时DataNode会有如下日志: 2016-03-17 18:51:44,721 | WARN | org.apache.hadoop.hdfs.server.datanode.DataXceiverServer@5386659f | hadoopc1h2:25009:DataXceiverServer: | DataXceiverServer.java:158 java.io.IOException: Xceiver count 4097 exceeds the limit of concurrent xcievers: 4096 at org.apache.hadoop.hdfs.server.datanode.DataXceiverServer.run(DataXceiverServer.java:140) at java.lang.Thread.run(Thread.java:745) DataNode的磁盘空间不足。 DataNode的心跳有延迟。
  • 代码样例 完整样例代码可参考com.huawei.bigdata.hdfs.examples.ColocationExample。 在运行Colocation工程时,需要设置运行用户,此用户需绑定supergroup用户组。 在运行Colocation工程时,HDFS的配置项fs.defaultFS不能配置为viewfs://ClusterX。 初始化 使用Colocation前需要设置运行用户。 private static void init() throws IOException { // 设置用户,若用户没有设置HADOOP_USER_NAME,则使用USER if (System.getenv("HADOOP_USER_NAME") == null && System.getProperty("HADOOP_USER_NAME") == null) { System.setProperty("HADOOP_USER_NAME", USER); } } 获取实例 样例:Colocation的操作使用DFSColocationAdmin和DFSColocationClient实例,在进行创建group等操作前需获取实例。 dfsAdmin = new DFSColocationAdmin(conf); dfs = new DFSColocationClient(); dfs.initialize(URI.create(conf.get("fs.defaultFS")), conf); 创建group 样例:创建一个gid01组,组中包含3个locator。 /** * 创建group * * @throws java.io.IOException */ private static void createGroup() throws IOException { dfsAdmin.createColocationGroup(COLOCATION_GROUP_GROUP01, Arrays.asList(new String[] { "lid01", "lid02", "lid03" })); } 写文件,写文件前必须创建对应的group 样例:写入testfile.txt文件。 /** * 创建并写入文件 * * @throws java.io.IOException */ private static void put() throws IOException { FSDataOutputStream out = dfs.create(new Path(TESTFILE_TXT), true, COLOCATION_GROUP_GROUP01, "lid01"); // 待写入HDFS的数据 byte[] readBuf = "Hello World".getBytes("UTF-8"); out.write(readBuf, 0, readBuf.length); out.close(); } 删除文件 样例:删除testfile.txt文件。 /** * 删除文件 * * @throws java.io.IOException */ @SuppressWarnings("deprecation") private static void delete() throws IOException { dfs.delete(new Path(TESTFILE_TXT)); } 删除group 样例:删除gid01。 /** * 删除group * * @throws java.io.IOException */ private static void deleteGroup() throws IOException { dfsAdmin.deleteColocationGroup(COLOCATION_GROUP_GROUP01); }
  • 功能简介 同分布(Colocation)功能是将存在关联关系的数据或可能要进行关联操作的数据存储在相同的存储节点上。HDFS文件同分布的特性,将那些需进行关联操作的文件存放在相同数据节点上,在进行关联操作计算时避免了到别的数据节点上获取数据,大大降低网络带宽的占用。 在使用Colocation功能之前,建议用户对Colocation的内部机制有一定了解,包括: • Colocation分配节点原理 • 扩容与Colocation分配 • Colocation与数据节点容量 Colocation分配节点原理 Colocation为locator分配数据节点的时候,locator的分配算法会根据已分配的情况,进行均衡的分配数据节点。 locator分配算法的原理是,查询目前存在的所有locators,读取所有locators所分配的数据节点,并记录其使用次数。根据使用次数,对数据节点进行排序,使用次数少的排在前面,优先选择排在前面的节点。每次选择一个节点后,计数加1,并重新排序,选择后续的节点。 扩容与Colocation分配 集群扩容之后,为了平衡地使用所有的数据节点,使新的数据节点的分配频率与旧的数据节点趋于一致,有如下两种策略可以选择,如表1所示。 表1 分配策略 编号 策略 说明 1 删除旧的locators,为集群中所有数据节点重新创建locators。 在未扩容之前分配的locators,平衡的使用了所有数据节点。当扩容后,新加入的数据节点并未分配到已经创建的locators中,所以使用Colocation来存储数据的时候,只会往旧的数据节点存储数据。 由于locators与特定数据节点相关,所以当集群进行扩容的时候,就需要对Colocation的locators分配进行重新规划。 2 创建一批新的locators,并重新规划数据存放方式。 旧的locators使用的是旧的数据节点,而新创建的locators偏重使用新的数据节点,所以需要根据实际业务对数据的使用需求,重新规划locators的使用。 一般的,建议用户在进行集群扩容之后采用策略1来重新分配locators,可以避免数据偏重使用新的数据节点。 Colocation与数据节点容量 由于使用Colocation进行存储数据的时候,会固定存储在指定的locators所对应的数据节点上面,所以如果不对locator进行规划,会造成数据节点容量不均衡。下面总结了保证数据节点容量均衡的两个主要的使用原则,如表2所示。 表2 使用原则 编号 使用原则 说明 1 所有的数据节点在locators中出现的频率一样。 如何保证频率一样:假如数据节点有N个,则创建locators的数量应为N的整数倍(N个、2N个……)。 2 对于所有locators的使用需要进行合理的数据存放规划,让数据均匀的分布在这些locators中。 无 HDFS的二次开发过程中,可以获取DFSColocationAdmin和DFSColocationClient实例,进行从location创建group、删除group、写文件和删除文件的操作。 使用Colocation功能,用户指定了DataNode,会造成某些节点上数据量很大。数据倾斜严重,导致HDFS写任务失败。 由于数据倾斜,导致MapReduce只会在某几个节点访问,造成这些节点上负载很大,而其他节点闲置。 针对单个应用程序任务,只能使用一次DFSColocationAdmin和DFSColocationClient实例。如果每次对文件系统操作都获取此实例,会创建过多HDFS链接,消耗HDFS资源。 Colocation提供了文件同分布的功能,执行集群balancer或mover操作时,会移动数据块,使Colocation功能失效。因此,使用Colocation功能时,建议将HDFS配置项dfs.datanode.block-pinning.enabled设置为true,此时执行集群Balancer或Mover操作时,使用Colocation写入的文件将不会被移动,从而保证了文件同分布。