云服务器内容精选

  • Step2 在Notebook中调试模型 打开一个新的Terminal终端,进入“/home/ma-user/infer/”目录,运行启动脚本run.sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。启动命令如下: sh run.sh 图1 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图2 手写数字图片 图3 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'images=@/home/ma-user/work/test.png' -X POST http://127.0.0.1:8080/ 图4 预测 在调试过程中,如果有修改模型文件或者推理脚本文件,需要重启run.sh脚本。执行如下命令先停止nginx服务,再运行run.sh脚本。 #查询nginx进程 ps -ef |grep nginx #关闭所有nginx相关进程 kill -9 {进程ID} #运行run.sh脚本 sh run.sh 也可以执行pkill nginx命令直接关闭所有nginx进程。 #关闭所有nginx进程 pkill nginx #运行run.sh脚本 sh run.sh 图5 重启run.sh脚本 父主题: 无需构建直接在开发环境中调试并保存镜像用于推理
  • 模型包文件样例 模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。 Model目录下必须要包含推理脚本文件customize_service.py,目的是为开发者提供模型预处理和后处理的逻辑。 图5 推理模型model目录示意图(需要用户自己准备模型文件) 推理脚本customize_service.py的具体写法要求可以参考模型推理代码编写说明。 本案例中提供的customize_service.py文件具体内容如下: import logging import threading import numpy as np import tensorflow as tf from PIL import Image from model_service.tfserving_model_service import TfServingBaseService class mnist_service(TfServingBaseService): def __init__(self, model_name, model_path): self.model_name = model_name self.model_path = model_path self.model = None self.predict = None # 非阻塞方式加载saved_model模型,防止阻塞超时 thread = threading.Thread(target=self.load_model) thread.start() def load_model(self): # load saved_model 格式的模型 self.model = tf.saved_model.load(self.model_path) signature_defs = self.model.signatures.keys() signature = [] # only one signature allowed for signature_def in signature_defs: signature.append(signature_def) if len(signature) == 1: model_signature = signature[0] else: logging.warning("signatures more than one, use serving_default signature from %s", signature) model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY self.predict = self.model.signatures[model_signature] def _preprocess(self, data): images = [] for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((28, 28, 1)) images.append(image1) images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32) preprocessed_data = images return preprocessed_data def _inference(self, data): return self.predict(data) def _postprocess(self, data): return { "result": int(data["output"].numpy()[0].argmax()) }