云服务器内容精选

  • 离线Compaction配置 对于MOR表的实时业务,通常设置在写入中同步生成compaction计划,因此需要额外通过DataArts或者脚本调度SparkSQL去执行已经产生的compaction计划。 执行参数 set hoodie.compact.inline = true; --打开compaction操作。 set hoodie.run.compact.only.inline = true; --compaction只执行已生成的计划,不产生新计划。 set hoodie.cleaner.commits.retained = 120; --清理保留120个commit。 set hoodie.keep.max.commits = 140; --归档最大保留140个commit。 set hoodie.keep.min.commits = 121; --归档最小保留121个commit。 set hoodie.clean.async = false; --打开异步清理。 set hoodie.clean.automatic = false; --关闭自动清理,防止compaction操作触发clean。 run compaction on $tablename; --执行compaction计划。 run clean on $tablename; --执行clean操作清理冗余版本。 run archivelog on $tablename; --执行archivelog合并清理元数据文件。 关于清理、归档参数的值不宜设置过大,会影响Hudi表的性能,通常建议: hoodie.cleaner.commits.retained = compaction所需要的commit数的2倍 hoodie.keep.min.commits = hoodie.cleaner.commits.retained + 1 hoodie.keep.max.commits = hoodie.keep.min.commits + 20 执行compaction后再执行clean和archive,由于clean和archivelog对资源要求较小,为避免资源浪费,使用DataArts调度的话可以compaction作为一个任务,clean、archive作为一个任务分别配置不同的资源执行来节省资源使用。 执行资源 Compaction调度的间隔应小于Compaction计划生成的间隔,例如1小时左右生成一个Compaction计划的话,执行Compaction计划的调度任务应该至少半小时调度一次。 Compaction作业配置的资源,vcore数至少要大于等于单个分区的桶数,vcore数与内存的比例应为1:4即1个vcore配4G内存。 父主题: Bucket调优示例
  • 实时任务接入 实时作业一般由Flink Sql或Sparkstreaming来完成,流式实时任务通常配置同步生成compaction计划,异步执行计划。 Flink SQL作业中sink端Hudi表相关配置如下: create table denza_hudi_sink ( $HUDI_SINK_SQL_REPLACEABLE$ ) PARTITIONED BY ( years, months, days ) with ( 'connector' = 'hudi', //指定写入的是Hudi表 'path' = 'obs://XXXXXXXXXXXXXXXXXX/', //指定Hudi表的存储路径 'table.type' = 'MERGE_ON_READ', //Hudi表类型 'hoodie.datasource.write.recordkey.field' = 'id', //主键 'write.precombine.field' = 'vin', //合并字段 'write.tasks' = '10', //flink写入并行度 'hoodie.datasource.write.keygenerator.type' = 'COMPLEX', //指定KeyGenerator,与Spark创建的Hudi表类型一致 'hoodie.datasource.write.hive_style_partitioning' = 'true', //使用hive支持的分区格式 'read.streaming.enabled' = 'true', //开启流读 'read.streaming.check-interval' = '60', //checkpoint间隔,单位为秒 'index.type'='BUCKET', //指定Hudi表索引类型为BUCKET 'hoodie.bucket.index.num.buckets'='10', //指定bucket桶数 'compaction.delta_commits' = '3', //compaction生成的commit间隔 'compaction.async.enabled' = 'false', //compaction异步执行关闭 'compaction.schedule.enabled' = 'true', //compaction同步生成计划 'clean.async.enabled' = 'false', //异步clean关闭 'hoodie.archive.automatic' = 'false', //自动archive关闭 'hoodie.clean.automatic' = 'false', //自动clean关闭 'hive_sync.enable' = 'true', //自动同步hive表 'hive_sync.mode' = 'jdbc', //同步hive表方式为jdbc 'hive_sync.jdbc_url' = '', //同步hive表的jdbc url 'hive_sync.db' = 'hudi_cars_byd', //同步hive表的database 'hive_sync.table' = 'byd_hudi_denza_1s_mor', //同步hive表的tablename 'hive_sync.metastore.uris' = 'thrift://XXXXX:9083 ', //同步hive表的metastore uri 'hive_sync.support_timestamp' = 'true', //同步hive表支持timestamp格式 'hive_sync.partition_extractor_class' = 'org.apache.hudi.hive.MultiPartKeysValueExtractor' //同步hive表的extractor类 ); Spark streaming写入Hudi表常用的参数如下(参数意义与上面flink类似,不再做注释): hoodie.table.name= hoodie.index.type=BUCKET hoodie.bucket.index.num.buckets=3 hoodie.datasource.write.precombine.field= hoodie.datasource.write.recordkey.field= hoodie.datasource.write.partitionpath.field= hoodie.datasource.write.table.type= MERGE_ON_READ hoodie.datasource.write.hive_style_partitioning=true hoodie.compact.inline=true hoodie.schedule.compact.only.inline=true hoodie.run.compact.only.inline=false hoodie.clean.automatic=false hoodie.clean.async=false hoodie.archive.async=false hoodie.archive.automatic=false hoodie.compact.inline.max.delta.commits=50 hoodie.datasource.hive_sync.enable=true hoodie.datasource.hive_sync.partition_fields= hoodie.datasource.hive_sync.database= hoodie.datasource.hive_sync.table= hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtractor 父主题: Bucket调优示例
  • 离线Compaction配置 对于MOR表的实时业务,通常设置在写入中同步生成compaction计划,因此需要额外通过DataArts或者脚本调度SparkSQL去执行已经产生的compaction计划。 执行参数 set hoodie.compact.inline = true; //打开compaction操作 set hoodie.run.compact.only.inline = true; //compaction只执行已生成的计划,不产生新计划 set hoodie.cleaner.commits.retained = 120; // 清理保留120个commit set hoodie.keep.max.commits = 140; // 归档最大保留140个commit set hoodie.keep.min.commits = 121; // 归档最小保留121个commit set hoodie.clean.async = false; // 打开异步清理 set hoodie.clean.automatic = false; // 关闭自动清理,防止compaction操作出发clean run compaction on $tablename; // 执行compaction计划 run clean on $tablename; // 执行clean操作清理冗余版本 run archivelog on $tablename; // 执行archivelog合并清理元数据文件 关于清理、归档参数的值不宜设置过大,会影响Hudi表的性能,通常建议: hoodie.cleaner.commits.retained = compaction所需要的commit数的2倍 hoodie.keep.min.commits = hoodie.cleaner.commits.retained + 1 hoodie.keep.max.commits = hoodie.keep.min.commits + 20 执行compaction后再执行clean和archive,由于clean和archivelog对资源要求较小,为避免资源浪费,使用DataArts调度的话可以compaction作为一个任务,clean、archive作为一个任务分别配置不同的资源执行来节省资源使用。 执行资源 Compaction调度的间隔应小于Compaction计划生成的间隔,例如1小时左右生成一个Compaction计划的话,执行Compaction计划的调度任务应该至少半小时调度一次。 Compaction作业配置的资源,vcore数至少要大于等于单个分区的桶数,vcore数与内存的比例应为1:4即1个vcore配4G内存。 父主题: Bucket调优示例