云服务器内容精选

  • 准备工作 本章节的边缘部署操作以largemodel集群为例,示例集群信息如下表。 表2 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge.4镜像 EulerOS 2.9 64bit with ARM for Tenant 20230728 base 2.9.15 公网IP:100.85.220.207 root密码:/ CPU架构:aarch64(登录设备,执行arch命令查看) worker bms-panguXXXX CPU:Kunpeng 内存:24*64GB DDR4 RAM (GB) 本地磁盘:3*7.68TB NVMe SSD 扩展配置:2*100GE+8*200GE 类型:physical.kat2e.48xlarge.8.313t.ei.pod101 euler2.10_arm_sdi3_1980b_hc_sdi5_b080_20230831v2 公网IP:100.85.216.151 root密码:/ CPU架构:aarch64(登录设备,执行arch命令查看) 依赖包下载。 docker下载:https://download.docker.com/linux/static/stable 选择对应cpu架构下载,docker版本选在19.0.3+。 K3S下载:https://github.com/k3s-io/k3s/releases/tag/v1.21.12%2Bk3s1 按照对应cpu架构下载二进制文件以及air-gap镜像。 npu驱动和固件安装。 执行命令npu-smi info查看驱动是否已安装。如果有回显npu卡信息,说明驱动已安装。 详情请参见昇腾官方文档。 hccn too网卡配置。 执行如下命令,查看是否有回显网卡信息。如果有,则说明网卡已经配置,否则继续操作下面步骤。 cat /etc/hccn.conf 执行如下命令,查看npu卡数。 npu-smi info 执行如下命令(地址自行配置): hccn_tool -i 0 -ip -s address 192.168.0.230 netmask 255.255.255.0 hccn_tool -i 1 -ip -s address 192.168.0.231 netmask 255.255.255.0 hccn_tool -i 2 -ip -s address 192.168.0.232 netmask 255.255.255.0 hccn_tool -i 3 -ip -s address 192.168.0.233 netmask 255.255.255.0 hccn_tool -i 4 -ip -s address 192.168.0.234 netmask 255.255.255.0 hccn_tool -i 5 -ip -s address 192.168.0.235 netmask 255.255.255.0 hccn_tool -i 6 -ip -s address 192.168.0.236 netmask 255.255.255.0 hccn_tool -i 7 -ip -s address 192.168.0.237 netmask 255.255.255.0 执行命令cat /etc/hccn.conf,确保有如下回显网卡信息,则配置完成。 配置NFS网盘服务。 大模型采用镜像+模型分开的方式部署时,需要有一个节点来提供nfs网盘服务,创建部署时通过nfs挂载的方式访问模型。
  • 知识库介绍 平台提供了知识库功能来管理和存储数据,支持为应用提供自定义数据,并与之进行互动。 知识库支持导入以下格式的本地文档: 文本文档数据。支持上传常见文本格式,包括:txt、doc、docx、pdf、ppt、pptx格式。 表格数据。支持上传常见的表格文件格式,便于管理和分析结构化数据,包括:xlsx、xls、csv格式。 无论是文本文档、演示文稿,还是电子表格文件,用户都可以轻松地将数据导入知识库,无需额外的转换或格式处理。 父主题: 创建与管理知识库
  • 创建插件 创建插件的步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“插件”页签,单击右上角“创建插件”。 在“创建插件”页面,填写插件名称与插件描述,单击图片可上传插件图标,单击“下一步”。 在“配置信息”页面,参照表1完成信息配置。 表1 插件信息配置说明 参数名称 参数说明 插件URL 插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。 URL对应的IP默认不应为内网,否则会导致注册失败。仅在非商用环境部署时,才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。 权限校验 选择调用API时是否需要通过鉴权才可以调用。 无需鉴权:API可以公开访问,不需要任何形式的身份验证或授权。 用户级鉴权:需要用户提供身份验证信息来访问API。 需填写密钥位置,即密钥是从Header中读取还是Query中读取。并设置密钥鉴权参数名、密钥来源参数名,以确保系统能够正确地提取和使用鉴权信息。 API Key:在调用API时提供一个唯一的API Key进行鉴权。 需填写密钥位置,即密钥是从Header中读取还是Query中读取。并设置API Key的密钥鉴权参数名和密钥值。 请求头 填写API的请求头信息,例如: Key:Content-Type Value:application/json 图1 API请求信息配置示例 自定义插件使用HTTP服务,或不增加鉴权方式可能存在安全风险。 单击“下一步”,在“参数信息”页面,参照表2完成参数配置。 表2 插件参数配置说明 参数类型 参数名称 参数说明 请求参数 参数封装 开启后,会将请求参数封装为一个列表(数组)结构,可适配入参为数组格式的插件接口。 示例:原参数列表:{"a":"string", "b":1},开启封装后的参数列表:[{"a":"string", "b":1}] 参数名称 参数的名称,参数名称会作为大模型解析参数含义的依据。 中文名称 该参数的中文名称。 参数类型 该参数值的数据类型,String、Integer、Number等多种类型支持选择。 位置 当前参数在请求信息中的位置,可选Body、Headers或Query。 默认值 参数的默认值。 描述 参数的描述,尽可能准确的描述参数的含义和要求,可提升Agent提取参数的准确率。 参数校验 可设置当前参数的校验规则。 必填 指定该参数是否为必填项。 响应参数 参数封装 开启后,会将请求参数封装为一个列表(数组)结构,可适配入参为数组格式的插件接口。 示例:原参数列表:{"a":"string", "b":1},开启封装后的参数列表:[{"a":"string", "b":1}] 参数名称 响应参数的名称,参数名称会作为大模型解析大模型输出结果的依据。 参数描述 响应参数的名称,参数描述会作为大模型解析大模型输出结果的依据。 参数类型 该参数值的数据类型,String、Integer、Number等多种类型支持选择。 是否提取 开启后则该参数必须提取到,关闭则该参数允许为空或者使用默认值。 图2 填写API请求、响应参数 父主题: 创建与管理插件
  • 插件介绍 在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调用它们,从外部服务中获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了预置插件,直接可用,无需额外开发。例如,平台提供的“Python解释器插件”能够根据用户输入的问题自动生成Python代码,并执行该代码获取结果。此插件为Agent提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 自定义插件:为了满足更个性化的需求,平台允许开发者创建自定义插件,支持将API通过配置方式快速创建为插件,并供Agent调用。这样,开发者可以根据特定需求为应用增加专属功能。 父主题: 创建与管理插件
  • 应用介绍 在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。 流程型Agent:以工作流为任务执行核心,用户可以通过在画布上“拖拽”节点来搭建任务流程。支持编排的节点类型包括:大模型节点、知识检索节点、意图识别节点、插件节点、判断节点、代码节点、消息节点、提问器节点。 优点:高度可扩展,支持低代码开发。 缺点:对话交互的智能度较低,复杂场景下流程分支较多,维护难度较大。 父主题: 编排与调用应用
  • NLP大模型评测指标说明 NLP大模型支持自动评测与人工评测,各指标说明如表1、表2、表3。 表1 NLP大模型自动评测指标说明-不使用评测模板 评测指标(自动评测-不使用评测模板) 指标说明 F1_SCORE 精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。 ROUGE-1 模型生成句子与实际句子在单个词的相似度,数值越高,表明模型性能越好。 ROUGE-2 模型生成句子与实际句子在两个词的相似度,数值越高,表明模型性能越好。 ROUGE-L 模型生成句子与实际句子在最长公共子序列的相似度,数值越高,表明模型性能越好。 PRECISION 问答匹配的精确度,模型生成句子与实际句子相比的精确程度,数值越高,表明模型性能越好。 表2 NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测) 指标说明 准确性 模型生成答案正确且无事实性错误。 average 模型生成句子与实际句子基于评估指标得到的评分后,统计平均得分。 goodcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分为5分的占比。 badcase 模型生成句子与实际句子基于评估指标得到的评分后,统计得分1分以下的占比。 用户自定义的指标 由用户定义的指标,如有用性、逻辑性、安全性等。
  • 工作流常见错误码与解决方案 工作流常见报错及解决方案请详见表1。 表1 工作流节点常见报错与解决方案 模块名称 错误码 错误描述 解决方案 开始节点 101501 开始节点全局配置未传入值。 开始节点错误,请联系客服解决。 结束节点 101531 结束节点初始化失败。 检查结束节点配置,可能为校验报错。 101532 结束节点模板拼接失败。 先检查模板占位符与输入是否匹配,请联系客服解决。 101533 结束节点流式处理失败。 请联系客服解决。 大模型节点 101561 大模型节点初始化失败。 检查大模型节点配置,可能为校验报错。 代码节点 101591 代码组件初始化失败。 检查代码节点配置,可能为校验报错。 101592 代码节点安全沙箱请求失败。 请联系客服解决。 101593 代码节点安全沙箱执行失败。 检查代码的语法是否有误,检查是否用到了未引用的变量。 101594 代码组件安全沙箱其他报错。 请联系客服解决。 101595 代码节点执行失败未知错误。 请联系客服解决。 消息节点 101651 消息组件初始化失败。 检查消息节点配置,可能为校验报错。 101652 消息节点缺少模板信息。 配置消息节点的提示词模板。 101653 消息节点模板拼接错误。 先检查模板占位符与输入是否匹配,若仍无法解决,请联系客服解决。 101654 消息组件执行失败。 请联系客服解决。 101655 消息组件异步执行失败。 请联系客服解决。 意图识别节点 101098 意图识别prompt模板请求失败。 检查模板占位符与输入是否匹配。 101097 意图识别调用大模型的prompt不符合模型输入的规范。 检查输入的prompt格式,消息的角色和内容。 101096 意图识别调用大模型失败。 检查消息的格式,内容以及大模型服务是否正常。 101095 意图识别用户query输入/引用解析失败。 检查用户query格式和内容。 101094 意图识别prompt模板构建失败。 检查内置模板以及输入的system prompt格式与内容。 提问器节点 101043 当单个提问器内的对话轮数超过预设轮数上限时触发该错误码,对话状态回到开始节点状态。 可通过调大对话轮数上限解决。 101047 初始化深度定制前后处理模块失败时触发该错误码。 可检查护栏配置是否符合要求。 101048 执行深度定制用户回复改写(前处理)失败时触发该错误码。 可检查前处理护栏代码。 101049 执行深度定制大模型生成的参数取值改写(后处理)失败时触发该错误码。 可检查后处理护栏代码。 101050 执行默认护栏(时间参数解析)失败时触发该错误码。 可检查支持处理的时间类型是否超出支持范围。 102053 提示词模板有误时触发该错误码。 检查提示词模板是否格式有误。 103004 大模型推理失败时触发该错误码。 请检查模型服务是否可以正常运行。 插件节点 101741 插件组件初始化失败。 检查插件组件配置,可能为校验报错。 101742 工作流插件节点参数类型转换时出错。 根据error message确定具体转换出错的参数名称,并确认类型是否正确。 101743 工作流插件节点的input在插件定义中不存在。 检查插件定义和对应的组件定义是否匹配。 101744 插件定义了response,但实际插件执行结果与定义不一致。 检查插件response定义和实际插件执行结果是否匹配。 101745 工作流插件节点执行出错。 插件执行出错,可以根据具体的error message信息定位。如果message无有效信息,说明该错误属于未捕获到的异常。 105001 插件执行时发生了无法捕获的异常。 检查插件本身是否可用。 105004 插件定义时check param error。 根据对应error message信息确定具体出错的参数定义。 105005 插件定义不合法。 插件定义时的数据不合法,例如字段定义超出最长长度,具体根据error message判断。 105008 插件内部错误。 请联系客服解决。 105010 插件运行时鉴权出错。 可根据error message信息确定具体出错的鉴权问题,并检查鉴权信息的传递和插件鉴权定义是否正确。 105011 插件运行返回的响应代码非200。 可根据报信息查看实际的http返回码。 105012 插件request请求超时。 插件请求超时,检查插件服务。 105013 插件返回结果过大。 当前支持10M大小的返回,超过此大小会报错。 105014 插件request proxy error。 请检查插件服务是否有问题导致无法连接。 认证鉴权 110000 认证失败。 查看认证配置。 110001 用户信息获取失败。 查看用户信息是否正确配置。 工作流 112501 工作流认证失败。 查看认证配置。 112502 缺少必要参数。 从打印日志可以看出当前缺失何种参数。 112503 工作流连接数据库失败。 请联系客服解决。 112504 缺少必要权限。 查看当前用户权限。 112513 工作流流程中存在死循环。 检查工作流画布。 112514 工作流被引用,无法删除。 查看知识型应用中是否引用了该工作流。 112600 workflow ir转化失败 需要查看工作流配置是否正确。 112941 获取workflow对话历史失败 请联系客服解决。
  • 使用“能力调测”调用科学计算大模型 能力调测功能支持用户调用预置或训练后的科学计算大模型。使用该功能前,请完成模型的部署操作,步骤详见创建科学计算大模型部署任务。 使用“能力调测”调用科学计算大模型可实现包括全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球海洋生态、全球海浪高度场景的预测能力。具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“能力调测”,单击“科学计算”页签。 根据不同场景完成页面参数配置。 天气/降水预测场景的参数配置,请参考表1。 表1 科学计算大模型能力调测参数说明(天气/降水预测) 参数 说明 场景 支持选择全球中期天气要素预测、全球中期降水预测。 全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。 中期天气要素模型包括6h分辨率模型,即以起报时刻开始,可以逐6h往后进行降水情况的预测。 结果存储路径 用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m v风、2米温度、海平面气压,没有选择的变量推理结果将不输出。 高空变量 设置高空变量参数,包括:4个表面层特征(10m u风、10m v风、2米温度、海平面气压),13高空层次(1000、925、850、700、600、500、400、300、250、200、150、100、50hPa)的5个高空层特征(重力位势、u风、v风、比湿、温度),分辨率为25km*25km的网格数据。 集合预报 用于选择是否开启集合预报。 在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 集合成员数 用于选择生成预报的不同初始场的数量,取值为2~10。 扰动类型 用于选择生成集合预报初始场的扰动类型,包括perlin加噪和CNOP加噪两种方式。 Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 初始扰动数量 用于选择集合预报的CNOP初始扰动数量。 在CNOP的加噪方式中,会先对初始场进行一定数量的加噪得到一组加噪后的初始场,然后从这组初始场中选择能量变化最大的初始场作为集合预报的初始场,启动推理作业。 ensemble_noise_perlin_scale 用于选择集合预报的Perlin加噪强度。 ensemble_noise_perlin_x 用于选择集合预报的Perlin加噪x经度方向的尺度。 ensemble_noise_perlin_octave 用于选择集合预报的Perlin加噪octave。Perlin噪音的octave指的是噪音的频率,在生成Perlin噪音时,可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 ensemble_noise_perlin_y 用于选择集合预报的Perlin加噪y纬度方向的尺度。 输出设置 用于选择是否输出图片结果。 天气/降水预测场景的参数配置示例如下: 图1 调测科学计算大模型示例1(天气/降水预测) 图2 调测科学计算大模型示例2(天气/降水预测) 海洋类预测场景的参数配置,请参考表2。 表2 科学计算大模型能力调测参数说明(海洋类预测) 参数 说明 场景 支持选择全球海洋要素、区域海洋要素、全球海洋生态、全球海浪高度。 全球海洋要素:实现预测全球范围内海面高度, 温度、盐度、海流速度纬向分量和海流速度经向分量变量。 区域海洋要素:实现预测特定区域范围内海面高度, 温度、盐度、海流速度纬向分量和海流速度经向分量变量。 全球海洋生态:实现预测全球范围内的叶绿素浓度、硅藻浓度等8种生态变量。 全球海浪高度:实现预测有效波高的变量。 模型服务 支持选择用于启动推理作业的模型。 结果存储路径 用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对海洋模型预测参数进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 海表变量 用于描述海洋表面及其生态系统状态的具体指标,尤其是在海洋模型中用于模拟海洋生态和物理过程的输入变量。包括海平面气压、海表高度、总叶绿素浓度、叶绿素浓度、硅藻浓度、颗石藻浓度、蓝藻浓度、铁浓度、硝酸盐浓度、混合层深度、海表高度、有效波高等指标。不同模型的指标以页面展示为准。 深海变量 用于描述海洋深层的物理和化学特性,这些参数在海洋模型中用于模拟海洋内部的动态和状态。包括海温、海盐、海流径向速率、海流纬向速率等。 输出设置 用于选择是否输出图片结果。 海洋类预测场景的参数配置示例如下: 图3 调测科学计算大模型示例(海洋类预测) 父主题: 调用科学计算大模型
  • 科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如: INFO: root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 父主题: 训练科学计算大模型
  • 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图2 获取训练日志
  • 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化 模型训练任务正在进行初始化配置,准备开始训练。 排队中 模型训练任务正在排队,请稍等。 运行中 模型正在训练中,训练过程尚未结束。 停止中 模型训练正在停止中。 已停止 模型训练已被用户手动停止。 失败 模型训练过程中出现错误,需查看日志定位训练失败原因。 已完成 模型训练已完成。
  • 查看训练指标 对于已完成训练,训练状态是“训练完成”状态的任务,单击任务名称,可在“训练结果”页面查看训练指标,不同模型的训练指标介绍请参见表2。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 科学计算大模型 Loss 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量或在深海变量预测结果与真实结果之间差距的指标。该值越小,表示模型在高空(深海)变量的预测精度越高。 表面Loss(海表Loss) 表面Loss(海表Loss)是衡量模型在表面层次变量或在海表变量预测结果与真实结果之间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMS E 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。 ACC ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,值越接近+1表示预报与观测的一致性越好,值为0表示没有相关性,而负值则表示反向相关。 RQE 衡量预测值与真实值之间差距的指标。它是所有单个观测的相对误差的平方和。该值越小,代表模型性能越好。
  • 科学计算大模型训练类型选择建议 目前,全球中期天气要素模型提供训练功能和推理功能,降水模型仅提供推理功能。 全球中期天气要素预测模型的训练类型选择建议: 全球中期天气要素预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的中期天气要素预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:训练用于添加新的高空层次、高空变量或表面变量。如果您需要在现有模型中引入新要素,需要使用训练(重新训练模型)。在重训配置参数时,您可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。 中期海洋智能预测模型的训练类型选择建议: 中期海洋智能预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的区域中期海洋智能预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以及区域范围,适用于想自定义自己的区域模型的场景,需预先准备好区域高精度数据。 微调:在已有模型的基础上添加新数据,它适用于不改变模型结构参数和引入新要素的情况,添加最新数据的场景。
  • 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。 微调阶段:在预训练模型的基础上,微调利用特定领域的数据进一步优化模型,使其更好地满足实际任务需求。例如,区域海洋要素预测的微调是在已有模型上添加最新数据,不改变模型结构参数或引入新要素,以适应数据更新需求。 在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。
  • 科学计算大模型选择建议 科学计算大模型支持训练的模型类型有:全球中期天气要素模型、降水模型、区域中期海洋智能预测模型。 全球中期天气要素预测模型、降水模型选择建议: 科学计算大模型的全球中期天气要素预测模型、降水模型,可以对未来一段时间的天气和降水进行预测,具备以下优势: 高时间精度:全球中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况,降水模型可预测未来6小时的降水情况。高时间精度对于农业、交通、能源等领域的决策和规划非常重要。 全球覆盖:全球中期天气要素预测模型和降水模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里*25公里的空间。 数据驱动:全球中期天气要素预测模型和降水模型使用历史天气数据来训练模型,从而提高预测的准确性。这意味着它可以直接利用过去的观测数据,而不仅仅依赖于数值模型。 全球中期天气要素预测模型、降水模型信息见表1。 表1 全球中期天气要素预测模型、降水模型信息表 模型 预报层次 预报高空变量 预报表面变量 降水 时间分辨率 水平分辨率 区域范围 全球中期天气要素预测模型 13层(1000hpa, 925hpa, 850hpa, 700hpa, 600hpa, 500hpa, 400hpa, 300hpa, 250hpa, 200hpa, 150hpa, 100hpa, 50hpa) T:温度 Q:比湿 Z:重力位势 U:U风 V:V风 MLSP:海平面气压 U10:10米U风,经度方向 V10:10米V风,纬度方向 T2M:2米温度 - 1、3、6、24小时 0.25°*0.25° 全球 降水基模型 13层(1000hpa, 925hpa, 850hpa, 700hpa, 600hpa, 500hpa, 400hpa, 300hpa, 250hpa, 200hpa, 150hpa, 100hpa, 50hpa) T:温度 Q:比湿 Z:重力位势 U:U风 V:V风 MLSP:海平面气压 U10:10米U风,经度方向 V10:10米V风,纬度方向 T2M:2米温度 PRECIP6:过去6h累计降水 PRECIP24:过去24h累计降水 1、3、6、24小时 0.25°*0.25° 全球 支持训练的模型清单见表2,您可根据具体使用场景选择合适的模型。例如天气基础要素预测,需要时间分辨率为1小时的场景下,您可以选择Pangu-AI4S-Weather_1h-3.0.0模型。 表2 中期天气要素预测模型、降水模型的类型 模型名称 说明 Pangu-AI4S-Weather_Precip-20241030 2024年10月发布的版本,用于降水预测,支持1个实例部署推理。 Pangu-AI4S-Weather-Precip_6h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于降水预测,支持1个实例部署推理。 Pangu-AI4S-Weather-Precip_6h-3.1.0 2025年1月发布的版本,用于降水预测,支持1个实例部署推理。 Pangu-AI4S-Weather_1h-20241030 2024年10月发布的版本,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_1h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_1h-3.1.0 2025年1月发布的版本,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_3h-20241030 2024年10月发布的版本,用于天气基础要素预测,时间分辨率为3小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_3h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于天气基础要素预测,时间分辨率为3小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_3h-3.1.0 2025年1月发布的版本,用于天气基础要素预测,时间分辨率为3小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_6h-20241030 2024年10月发布的版本,用于天气基础要素预测,时间分辨率为6小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_6h-3.0.0 2024年12月发布的版本,用于天气基础要素预测,时间分辨率为6小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_6h-3.1.0 2025年1月发布的版本,用于天气基础要素预测,时间分辨率为6小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_6h-3.1.1 2025年1月发布的版本,用于天气基础要素预测,时间分辨率为6小时,相较于3.1.0版本预报准确度更高,1个实例部署。 Pangu-AI4S-Weather_24h-20241030 2024年10月发布的版本,用于天气基础要素预测,时间分辨率为24小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_24h-3.0.0 2024年12月发布的版本,相较于10月发布的版本运行速度有提升,用于天气基础要素预测,时间分辨率为24小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_24h-3.1.0 2025年1月发布的版本,用于天气基础要素预测,时间分辨率为24小时,1个训练单元起训及1个实例部署。 中期海洋智能预测模型选择建议: 科学计算大模型的中期海洋智能预测模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。中期海洋智能预报主要分全球海洋要素模型、区域海洋要素模型、全球海洋生态模型、全球海浪模型,信息见表3。 表3 中期海洋智能预测模型信息 模型 深海层深 预报深海变量 预报海表变量 时间分辨率 水平分辨率 区域范围 全球海洋要素模型 0m, 6m, 10m, 20m, 30m, 50m, 70m, 100m, 125m, 150m, 200m, 250m, 300m, 400m, 500m T:海温(℃) S:海盐(PSU) U:海流经向速率 (ms-1) V:海流纬向速率 (ms-1) SSH:海表高度(m) 24h 0.25°*0.25° 在60°S至65°N,180°W至180°E覆盖全球海洋主要海域(以下简称“全球海域”) 区域海洋要素模型 0m, 6m, 10m, 20m, 30m, 50m, 70m, 100m, 125m, 150m, 200m, 250m, 300m, 400m, 500m T:海温(℃) S:海盐(PSU) U:海流经向速率 (ms-1) V:海流纬向速率 (ms-1) SSH:海表高度(m) 24h 1/12° 特定区域 全球海洋生态模型 0m / Tca:总叶绿素浓度 (mg/m3) Chl:叶绿素浓度 (mg/m3) Dia :硅藻浓度 (mg/m3) Coc:颗石藻浓度 (mg/m3) Cya:蓝澡浓度 (mg/m3) Irn:铁浓度 (nano mole/L) Nit:硝酸盐浓度 (micro mole/L) MLD:混合层深度 (m) 24h 1° 在60°S至65°N,180°W至180°E覆盖全球海洋主要海域(以下简称“全球海域”) 全球海浪模型 0m / SWH有效波高 (m) 24h 0.5° 在60°S至65°N,180°W至180°E覆盖全球海洋主要海域(以下简称“全球海域”) 支持训练的模型清单见表4,您可根据具体使用场景选择合适的模型。例如区域海洋基础要素预测场景下,您可以选择Pangu-AI4S-Ocean_Regional_24h-20241030模型。 表4 区域中期海洋智能预测模型的类型 模型名称 说明 Pangu-AI4S-Ocean_24h-20241130 2024年11月发布的版本,用于海洋基础要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean_24h-3.1.0 2025年1月发布的版本,用于海洋基础要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 2024年11月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。 Pangu-AI4S-Ocean-Regional_24h-3.1.0 2025年1月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。 Pangu-AI4S-Ocean_Ecology_24h-20241130 2024年11月发布的版本,用于海洋生态要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean-Ecology_24h-3.1.0 2025年1月发布的版本,用于海洋生态要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Swell_24h-20241130 2024年11月发布的版本,用于海浪预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean-Swell_24h-3.1.0 2025年1月发布的版本,用于海浪预测,可支持1个实例部署推理。