云服务器内容精选

  • 操作步骤 (可选)在公有云管理控制台上方的“服务列表”中选择“大数据”中的“ 数据湖探索 ”,单击右上角的“常用链接”下载 DLI JDBC驱动(例如:dli-jdbc-1.1.0-jar-with-dependencies-jdk1.7.jar)。具体操作请参考下载JDBC驱动包。 JDBC认证方式支持AK/SK方式和Token方式,建议采用AK/SK方式。 询问永洪客服,获取永洪SaaS生产环境用户账号和密码。 登入永洪SaaS生产环境,输入用户账号和密码。
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseBulkDeleteExample文件: def main(args: Array[String]) { # -*- coding:utf-8 -*- """ 【说明】 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现 """ from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession\ .builder\ .appName("JavaHBaseBulkDeleteExample")\ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample') # 创建类实例并调用方法,传递sc._jsc参数 spark._jvm.JavaHBaseBulkDeleteExample().execute(spark._jsc, sys.argv) # 停止SparkSession spark.stop()
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala 版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample SparkOnHbaseJavaExample-1.0.jar bulktable python版本(文件名等于实际保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --jars SparkOnHbaseJavaExample-1.0.jar HBaseBulkDeleteExample.py bulktable yarn-cluster模式: java/scala 版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample SparkOnHbaseJavaExample-1.0.jar bulktable python版本(文件名等于实际保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --jars SparkOnHbaseJavaExample-1.0.jar HBaseBulkDeleteExample.py bulktable
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”),将配置项“spark.inputFormat.cache.enabled”设置为“false”。
  • 提交命令 假设用例代码打包后的jar包名为spark-hbaseContext-test-1.0.jar,并将jar包放在客户端“$SPARK_HOME”目录下,以下命令均在“$SPARK_HOME”目录执行,Java接口对应的类名前有Java字样,请参考具体样例代码进行书写。 yarn-client模式: java/scala 版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample SparkOnHbaseJavaExample-1.0.jar bulktable python版本(文件名等于实际保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode client --jars SparkOnHbaseJavaExample-1.0.jar HBaseButDeleteExample.py bulktable yarn-cluster模式: java/scala 版本(类名等请与实际代码保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --class com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample SparkOnHbaseJavaExample-1.0.jar bulktable python版本(文件名等于实际保持一致,此处仅为示例) bin/spark-submit --master yarn --deploy-mode cluster --jars SparkOnHbaseJavaExample-1.0.jar HBaseButDeleteExample.py bulktable
  • Python样例代码 下面代码片段仅为演示,具体代码参见SparkOnHbasePythonExample中HBaseBulkDeleteExample文件: def main(args: Array[String]) { # -*- coding:utf-8 -*- """ 【说明】 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现 """ from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession\ .builder\ .appName("JavaHBaseBulkDeleteExample")\ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.hbasecontext.JavaHBaseBulkDeleteExample') # 创建类实例并调用方法,传递sc._jsc参数 spark._jvm.JavaHBaseBulkDeleteExample().execute(spark._jsc, sys.argv) # 停止SparkSession spark.stop()
  • 支持的API列表 DLI JDBC Driver支持的API列表如下,对可能与JDBC标准产生歧义的地方加以备注说明。 Connection API支持的常用方法签名: Statement createStatement() PreparedStatement prepareStatement(String sql) void close() boolean isClosed() DatabaseMetaData getMetaData() PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency) Driver API支持的常用方法签名: Connection connect(String url, Properties info) boolean acceptsURL(String url) DriverPropertyInfo[] getPropertyInfo(String url, Properties info) ResultSetMetaData API支持的常用方法签名: String getColumnClassName(int column) int getColumnCount() int getColumnDisplaySize(int column) String getColumnLabel(int column) String getColumnName(int column) int getColumnType(int column) String getColumnTypeName(int column) int getPrecision(int column) int getScale(int column) boolean isCaseSensitive(int column) Statement API支持的常用方法签名: ResultSet executeQuery(String sql) int executeUpdate(String sql) boolean execute(String sql) void close() int getMaxRows() void setMaxRows(int max) int getQueryTimeout() void setQueryTimeout(int seconds) void cancel() ResultSet getResultSet() int getUpdateCount() boolean isClosed() PreparedStatement API支持的常用方法签名: void clearParameters() boolean execute() ResultSet executeQuery() int executeUpdate() PreparedStatement Set系列方法 ResultSet API支持的常用方法签名: int getRow() boolean isClosed() boolean next() void close() int findColumn(String columnLabel) boolean wasNull() get系列方法 DatabaseMetaData API支持的常用方法签名 ResultSet getCatalogs() 在DLI服务中没有Catalog的概念,返回空的ResultSet。 ResultSet getColumns(String catalog, String schemaPattern, String tableNamePattern, String columnNamePattern) Connection getConnection() getTables(String catalog, String schemaPattern,String tableNamePattern, String types[]) 该方法不采纳Catalog参数,schemaPattern对应DLI服务的database的概念。 ResultSet getTableTypes() ResultSet getSchemas() ResultSet getSchemas(String catalog, String schemaPattern)
  • 功能描述 DLI提供了一个通用接口,可用于获取用户在启动Spark作业时设置的委托的临时凭证。该接口将获取到的该作业委托的临时凭证封装到com.huaweicloud.sdk.core.auth.BasicCredentials类中。 获取到的委托的临时认证封装到com.huaweicloud.sdk.core.auth.ICredentialProvider接口的getCredentials()返回值中。 返回类型为com.huaweicloud.sdk.core.auth.BasicCredentials。 仅支持获取AK、SK、SecurityToken。 获取到AK、SK、SecurityToken后,请参考如何使用凭据管理服务替换硬编码的数据库账号密码查询凭据。
  • 约束限制 仅支持Spark3.3.1版本(Spark通用队列场景)使用委托授权访问临时凭证: 在创建作业时,请配置作业使用Spark3.3.1版本 已在作业中配置允许DLI访问DEW的委托信息。spark.dli.job.agency.name=自定义委托名称。 自定义委托请参考自定义DLI委托权限。 请注意配置参数不需要用"" 或 '' 包裹。 Spark3.3.1基础镜像内置了3.1.62版本的huaweicloud-sdk-core。
  • scala样例代码 object DliCatalogTest { def main(args:Array[String]): Unit = { val sql = args(0) val runDdl = Try(args(1).toBoolean).getOrElse(true) System.out.println(s"sql is $sql runDdl is $runDdl") val sparkConf = new SparkConf(true) sparkConf .set("spark.sql.session.state.builder","org.apache.spark.sql.hive.UQueryHiveACLSessionStateBuilder") .set("spark.sql.catalog.class","org.apache.spark.sql.hive.UQueryHiveACLExternalCatalog") sparkConf.setAppName("dlicatalogtester") val spark = SparkSession.builder .config(sparkConf) .enableHiveSupport() .config("spark.sql.extensions","org.apache.spark.sql.DliSparkExtension") .appName("SparkTest") .getOrCreate() System.out.println("catalog is " + spark.sessionState.catalog.toString) if (runDdl) { val df = spark.sql(sql).collect() } else { spark.sql(sql).show() } spark.close() } }
  • Python样例代码 #!/usr/bin/python # -*- coding: UTF-8 -*- from __future__ import print_function import sys from pyspark.sql import SparkSession if __name__ == "__main__": url = sys.argv[1] creatTbl = "CREATE TABLE test_sparkapp.dli_rds USING JDBC OPTIONS ('url'='jdbc:mysql://%s'," \ "'driver'='com.mysql.jdbc.Driver','dbtable'='test.test'," \ " 'passwdauth' = 'DatasourceRDSTest_pwd','encryption' = 'true')" % url spark = SparkSession \ .builder \ .enableHiveSupport() \ .config("spark.sql.session.state.builder","org.apache.spark.sql.hive.UQueryHiveACLSessionStateBuilder") \ .config("spark.sql.catalog.class", "org.apache.spark.sql.hive.UQueryHiveACLExternalCatalog") \ .config("spark.sql.extensions","org.apache.spark.sql.DliSparkExtension") \ .appName("python Spark test catalog") \ .getOrCreate() spark.sql("CREATE database if not exists test_sparkapp").collect() spark.sql("drop table if exists test_sparkapp.dli_rds").collect() spark.sql(creatTbl).collect() spark.sql("select * from test_sparkapp.dli_rds").show() spark.sql("insert into table test_sparkapp.dli_rds select 12,'aaa'").collect() spark.sql("select * from test_sparkapp.dli_rds").show() spark.sql("insert overwrite table test_sparkapp.dli_rds select 1111,'asasasa'").collect() spark.sql("select * from test_sparkapp.dli_rds").show() spark.sql("drop table test_sparkapp.dli_rds").collect() spark.stop()
  • 步骤2:OBS桶文件配置 如果需要创建OBS表,则需要先上传数据到OBS桶目录下。 本次演示的样例代码创建了OBS表,测试数据内容参考如下示例,创建名为的testdata.csv文件。 12,Michael 27,Andy 30,Justin 进入OBS管理控制台,在“桶列表”下,单击已创建的OBS桶名称,本示例桶名为“dli-test-obs01”。 单击“上传对象”,将testdata.csv文件上传到OBS桶根目录下。 在OBS桶根目录下,单击“新建文件夹”,创建名为“warehousepath”的文件夹。该文件夹路径用来存储Spark创建表的元数据信息“spark.sql.warehouse.dir”。
  • 开发流程 DLI进行Spark作业访问DLI元数据开发流程参考如下: 图1 Spark作业访问DLI元数据开发流程 表2 开发流程说明 序号 阶段 操作界面 说明 1 创建DLI通用队列 DLI控制台 创建作业运行的DLI队列。 2 OBS桶文件配置 OBS控制台 如果是创建OBS表,则需要上传文件数据到OBS桶下。 配置Spark创建表的元数据信息的存储路径。该文件夹路径用来存储Spark创建表的元数据信息“spark.sql.warehouse.dir”。 3 新建Maven工程,配置pom文件 IntelliJ IDEA 参考样例代码说明,编写程序代码创建DLI表或OBS表。 4 编写程序代码 5 调试,编译代码并导出Jar包 6 上传Jar包到OBS和DLI OBS控制台 DLI控制台 将生成的Spark Jar包文件上传到OBS目录下和DLI程序包中。 7 创建Spark Jar作业 DLI控制台 在DLI控制台创建Spark Jar作业并提交运行作业。 8 查看作业运行结果 DLI控制台 查看作业运行状态和作业运行日志。
  • 步骤4:编写代码 编写DliCatalogTest程序创建数据库、DLI表和OBS表。 完整的样例请参考Java样例代码,样例代码分段说明如下: 导入依赖的包。 import org.apache.spark.sql.SparkSession; 创建SparkSession会话。 创建SparkSession会话时需要指定Spark参数:"spark.sql.session.state.builder"、"spark.sql.catalog.class"和"spark.sql.extensions",按照样例配置即可。 Spark2.3.x版本 SparkSession spark = SparkSession .builder() .config("spark.sql.session.state.builder", "org.apache.spark.sql.hive.UQueryHiveACLSessionStateBuilder") .config("spark.sql.catalog.class", "org.apache.spark.sql.hive.UQueryHiveACLExternalCatalog") .config("spark.sql.extensions","org.apache.spark.sql.DliSparkExtension") .appName("java_spark_demo") .getOrCreate(); Spark2.4.x版本 SparkSession spark = SparkSession .builder() .config("spark.sql.session.state.builder", "org.apache.spark.sql.hive.UQueryHiveACLSessionStateBuilder") .config("spark.sql.catalog.class", "org.apache.spark.sql.hive.UQueryHiveACLExternalCatalog") .config("spark.sql.extensions","org.apache.spark.sql.DliSparkExtension") .config("spark.sql.hive.implementation","org.apache.spark.sql.hive.client.DliHiveClientImpl") .appName("java_spark_demo") .getOrCreate(); Spark3.1.x版本 SparkSession spark = SparkSession .builder() .config("spark.sql.session.state.builder", "org.apache.spark.sql.hive.UQueryHiveACLSessionStateBuilder") .config("spark.sql.catalog.class", "org.apache.spark.sql.hive.UQueryHiveACLExternalCatalog") .config("spark.sql.extensions","org.apache.spark.sql.DliSparkExtension") .appName("java_spark_demo") .getOrCreate(); Spark3.3.x版本 SparkSession spark = SparkSession .builder() .config("spark.sql.session.state.builder", "org.apache.spark.sql.hive.DliLakeHouseBuilder") .config("spark.sql.catalog.class", "org.apache.spark.sql.hive.DliLakeHouseCatalog") .appName("java_spark_demo") .getOrCreate(); 创建数据库。 如下样例代码演示,创建名为test_sparkapp的数据库。 spark.sql("create database if not exists test_sparkapp").collect(); 创建DLI表并插入测试数据。 spark.sql("drop table if exists test_sparkapp.dli_testtable").collect(); spark.sql("create table test_sparkapp.dli_testtable(id INT, name STRING)").collect(); spark.sql("insert into test_sparkapp.dli_testtable VALUES (123,'jason')").collect(); spark.sql("insert into test_sparkapp.dli_testtable VALUES (456,'merry')").collect(); 创建OBS表。如下示例中的OBS路径需要根据步骤2:OBS桶文件配置中的实际数据路径修改。 spark.sql("drop table if exists test_sparkapp.dli_testobstable").collect(); spark.sql("create table test_sparkapp.dli_testobstable(age INT, name STRING) using csv options (path 'obs://dli-test-obs01/testdata.csv')").collect(); 关闭SparkSession会话spark。 spark.stop();