云服务器内容精选
-
Notebook 自定义镜像 约束 制作自定义镜像时,Base镜像需满足如下规范: 可以基于开发环境提供的预置镜像为Base镜像制作自定义镜像。 基于昇腾、Dockerhub官网等官方开源的镜像制作,开源镜像需要满足如下操作系统约束: x86:Ubuntu18.04、Ubuntu20.04 ARM:Euler2.8.3、Euler2.10.7 Ubuntu20.04.6可能有兼容性问题,请优先使用低于该版本的操作系统。 不满足以上镜像规范,所制作的镜像使用可能会出现故障,请用户检查镜像规范,并参考Notebook自定义镜像故障基础排查自行排查,如未解决请联系华为技术工程师协助解决。 父主题: Notebook中使用自定义镜像
-
定义超参 使用预置框架创建算法时,ModelArts支持用户自定义超参,方便用户查阅或修改。定义超参后会体现在启动命令中,以命令行参数的形式传入您的启动文件中。 导入超参 您可以单击“增加超参”手动添加超参。 图1 添加超参 编辑超参 超参的参数说明参见表4。 表4 超参编辑参数 参数 说明 名称 填入超参名称。 超参名称支持64个以内字符,仅支持大小写字母、数字、下划线和中划线。 类型 填入超参的数据类型。支持String、Integer、Float和Boolean。 默认值 填入超参的默认值。创建训练作业时,默认使用该值进行训练。 约束 单击“约束”。在弹出对话框中,支持用户设置默认值的取值范围或者枚举值范围。 必需 选择是或否。 选择否,则在使用该算法创建训练作业时,支持在创建训练作业页面删除该超参。 选择是,则在使用该算法创建训练作业时,不支持在创建训练作业页面删除该超参。 描述 填入超参的描述说明。 超参描述支持大小写字母、中文、数字、空格、中划线、下划线、中英文逗号和中英文句号。
-
输入输出管道设置 训练过程中,基于预置框架的算法需要从OBS桶或者数据集中获取数据进行模型训练,训练产生的输出结果也需要存储至OBS桶中。用户的算法代码中需解析输入输出参数实现ModelArts后台与OBS的数据交互,用户可以参考开发自定义脚本完成适配ModelArts训练的代码开发。 创建基于预置框架的算法时,用户需要配置算法代码中定义的输入输出参数。 输入配置 表2 输入配置 参数 参数说明 参数名称 根据实际代码中的输入数据参数定义此处的名称。此处设置的代码路径参数必须与算法代码中解析的训练输入数据参数保持一致,否则您的算法代码无法获取正确的输入数据。 例如,算法代码中使用argparse解析的data_url作为输入数据的参数,那么创建算法时就需要配置输入数据的参数名称为“data_url”。 描述 输入参数的说明,用户可以自定义描述。 获取方式 输入参数的获取方式,默认使用“超参”,也可以选择“环境变量”。 输入约束 开启后,用户可以根据实际情况限制数据输入来源。输入来源可以选择“数据存储位置”或者“ModelArts数据集”。 如果用户选择数据来源为ModelArts数据集,还可以约束以下三种: 标注类型。数据类型请参考标注数据。 数据格式。可选“Default”和“CarbonData”,支持多选。其中“Default”代表Manifest格式。 数据切分。仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 可选“仅支持切分的数据集”、“仅支持未切分数据集”和“无限制”。数据切分详细内容可参考发布数据版本。 添加 用户可以根据实际算法添加多个输入数据来源。 输出配置 表3 输出配置 参数 参数说明 参数名称 根据实际代码中的训练输出参数定义此处的名称。此处设置的代码路径参数必须与算法代码中解析的训练输出参数保持一致,否则您的算法代码无法获取正确的输出路径。 例如,算法代码中使用argparse解析的train_url作为训练输出数据的参数,那么创建算法时就需要配置输出数据的参数名称为“train_url”。 描述 输出参数的说明,用户可以自定义描述。 获取方式 输出参数的获取方式,默认使用“超参”,也可以选择“环境变量”。 添加 用户可以根据实际算法添加多个输出数据路径。
-
完全使用自定义镜像 图2 完全使用自定义镜像创建算法 训练支持的自定义镜像使用说明请参考使用自定义镜像创建训练作业。 完全使用自定义镜像场景下,指定的“conda env”启动训练方法如下: 由于训练作业运行时不是shell环境,因此无法直接使用“conda activate”命令激活指定的 “conda env”,需要使用其他方式以达成使用指定“conda env”来启动训练的效果。 假设您的自定义镜像中的“conda”安装于“/home/ma-user/anaconda3”目录“conda env”为“python-3.7.10”,训练脚本位于“/home/ma-user/modelarts/user-job-dir/code/train.py”。可通过以下方式使用指定的“conda env”启动训练: 方式一:为镜像设置正确的“DEFAULT_CONDA_ENV_NAME”环境变量与“ANACONDA_DIR”环境变量。 ANACONDA_DIR=/home/ma-user/anaconda3 DEFAULT_CONDA_ENV_NAME=python-3.7.10 您可以使用Python命令启动训练脚本。启动命令示例如下: python /home/ma-user/modelarts/user-job-dir/code/train.py 方式二:使用“conda env python”的绝对路径。 您可以使用“/home/ma-user/anaconda3/envs/python-3.7.10/bin/python”命令启动训练脚本。启动命令示例如下: /home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/code/train.py 方式三:设置PATH环境变量。 您可以将指定的“conda env bin”目录配置到PATH环境变量中。您可以使用Python命令启动训练脚本。启动命令示例如下: export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py 方式四:使用“conda run -n”命令。 您可以使用“/home/ma-user/anaconda3/bin/conda run -n python-3.7.10”命令来执行训练命令,启动命令示例如下: /home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-job-dir/code/train.py 如果在训练时发生找不到“$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib ”目录下“.so”文件的相关报错,可以尝试将该目录加入到“LD_LIBRARY_PATH”,将以下命令放在上述启动方式命令前: export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH; 例如,方式一的启动命令示例此时变为: export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py
-
使用预置框架 + 自定义镜像 此功能与直接基于预置框架创建训练作业的区别仅在于,镜像是由用户自行选择的。用户可以基于预置框架制作自定义镜像。基于预置框架制作自定义镜像可参考使用基础镜像构建新的训练镜像章节。 图1 使用预置框架+自定义镜像创建算法 该功能的行为与直接基于预置框架创建的训练作业相同,例如: 系统将会自动注入一系列环境变量 PATH=${MA_HOME}/anaconda/bin:${PATH} LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH} PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH} 您选择的启动文件将会被系统自动以python命令直接启动,因此请确保镜像中的Python命令为您预期的Python环境。注意到系统自动注入的PATH环境变量,您可以参考下述命令确认训练作业最终使用的Python版本: export MA_HOME=/home/ma-user; docker run --rm {image} ${MA_HOME}/anaconda/bin/python -V docker run --rm {image} $(which python) -V 系统将会自动添加预置框架关联的超参
-
Notebook自定义镜像故障基础排查 当制作的自定义镜像使用出现故障时,请用户按照如下方法排查: 用户自定义镜像没有ma-user用户及ma-group用户组; 用户自定义镜像中/home/ma-user目录,属主和用户组不是ma-user和ma-group; 用户自定义镜像必须满足用户目录/home/ma-user权限为750,不能为其他权限; 用户自定义镜像使用远程SSH功能,OpenSSH版本要兼容或高于8.0; 用户制作的自定义镜像,在本地执行docker run启动,无法正常运行; 用户自行安装了Jupyterlab服务导致冲突的,需要用户本地使用Jupyterlab命令罗列出相关的静态文件路径,删除并且卸载镜像中的Jupyterlab服务; 用户自己业务占用了开发环境官方的8888、8889端口的,需要用户修改自己的进程端口号; 用户的镜像指定了PYTHONPATH、sys.path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权限、依赖缺失或构建命令错误)等原因导致的。 用户的Anaconda环境中是否出现了以下问题: 在“{python_env}/lib”目录下存在以python开头的非法目录(例如“pythonNone”),正常目录名应该是python+版本号(例如“python3.7”),这可能是由于环境配置错误或意外操作导致的。 用户可能手动在Anaconda环境目录“{conda}/envs”下创建了空目录或在环境的“lib”目录下创建了非法目录,这种操作会破坏Anaconda的目录结构。 用户可能手动清空了某个环境目录内的文件,而这些文件是Anaconda环境所必需的,导致环境无法正常工作。 用户修改“/home/ma-user/.ssh”目录权限导致ssh无法使用的。.ssh目录权限参考如下: chmod 750 .ssh chmod 644 .ssh/authorized_keys chmod 644 .ssh/config chmod 640 .ssh/environment chmod 750 .ssh/etc chmod 640 .ssh/known_hosts chmod 750 .ssh/var chmod 600 .ssh/etc/ssh_host_rsa_key chmod 640 .ssh/etc/ssh_host_rsa_key.pub chmod 750 .ssh/etc/sshd_config chmod 750 .ssh/var/run/sshd.pid 父主题: Notebook中使用自定义镜像
-
将自定义镜像创建为AI应用 参考从容器镜像中选择元模型导入元模型,您需要特别关注以下参数: 元模型来源:选择“从容器镜像中选择” 容器镜像所在的路径:选择已制作好的自有镜像 图4 选择已制作好的自有镜像 容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅当自定义镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致AI应用创建失败。 apis定义:选填,用于编辑自定义镜像的apis定义。模型apis定义需要遵循ModelArts的填写规范,参见模型配置文件说明。 本样例的配置文件如下所示: [{ "url": "/", "method": "post", "request": { "Content-type": "application/json" }, "response": { "Content-type": "application/json" } }, { "url": "/greet", "method": "post", "request": { "Content-type": "application/json" }, "response": { "Content-type": "application/json" } }, { "url": "/goodbye", "method": "get", "request": { "Content-type": "application/json" }, "response": { "Content-type": "application/json" } } ]
-
本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的E CS 或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录弹性云服务器。镜像选择公共镜像,推荐使用ubuntu18.04的镜像。 图1 创建ECS服务器-选择X86架构的公共镜像 登录主机后,安装Docker,可参考Docker官方文档。也可执行以下命令安装docker。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh 获取基础镜像。本示例以Ubuntu18.04为例。 docker pull ubuntu:18.04 新建文件夹“self-define-images”,在该文件夹下编写自定义镜像的“Dockerfile”文件和应用服务代码“test_app.py”。本样例代码中,应用服务代码采用了flask框架。 文件结构如下所示 self-define-images/ --Dockerfile --test_app.py “Dockerfile” From ubuntu:18.04 # 配置华为云的源,安装 python、python3-pip 和 Flask RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \ sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \ apt-get update && \ apt-get install -y python3 python3-pip && \ pip3 install --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/repository/pypi/simple Flask # 复制应用服务代码进镜像里面 COPY test_app.py /opt/test_app.py # 指定镜像的启动命令 CMD python3 /opt/test_app.py “test_app.py” from flask import Flask, request import json app = Flask(__name__) @app.route('/greet', methods=['POST']) def say_hello_func(): print("----------- in hello func ----------") data = json.loads(request.get_data(as_text=True)) print(data) username = data['name'] rsp_msg = 'Hello, {}!'.format(username) return json.dumps({"response":rsp_msg}, indent=4) @app.route('/goodbye', methods=['GET']) def say_goodbye_func(): print("----------- in goodbye func ----------") return '\nGoodbye!\n' @app.route('/', methods=['POST']) def default_func(): print("----------- in default func ----------") data = json.loads(request.get_data(as_text=True)) return '\n called default func !\n {} \n'.format(str(data)) # host must be "0.0.0.0", port must be 8080 if __name__ == '__main__': app.run(host="0.0.0.0", port=8080) 进入“self-define-images”文件夹,执行以下命令构建自定义镜像“test:v1”。 docker build -t test:v1 . 您可以使用“docker images”查看您构建的自定义镜像。
-
Notebook制作自定义镜像方法 制作自定义镜像有以下方式: 方式一:使用Notebook的预置镜像创建开发环境实例,在环境中进行依赖安装与配置,配置完成后,可以通过开发环境提供的镜像保存功能,将运行实例的内容以容器镜像的方式保存下来,作为自定义镜像使用。详细操作请参考将Notebook实例保存为自定义镜像。 方式二:基于ModelArts提供的基础镜像以及镜像构建模板来编写Dockerfile,在Notebook中构建出完全适合自己的镜像。然后将镜像进行注册,用以创建新的开发环境,满足自己的业务需求。详细操作请参考在Notebook中构建自定义镜像并使用。 方式三:基于ModelArts提供的基础镜像或第三方镜像,在ECS服务器上自行编写Dockerfile构建镜像,对ModelArts基础镜像或第三方镜像进行改造,构建出符合ModelArts要求的新的自定义Docker镜像,并将镜像推送到SWR,作为自定义镜像使用。详细操作请参考在ECS上构建自定义镜像并在Notebook中使用。 父主题: Notebook中使用自定义镜像
-
创建AI应用的自定义镜像规范 针对您本地开发的模型,在制作AI应用的自定义镜像时,需满足ModelArts定义的规范。 自定义镜像中不能包含恶意代码。 自定义镜像大小不超过50GB。 对于同步请求模式的AI应用,如果预测请求时延超过60s,会造成请求失败,甚至会有服务业务中断的风险,预测请求时延超过60s时,建议制作异步请求模式的镜像。 镜像对外接口 设置镜像的对外服务接口,推理接口需与config.json文件中apis定义的url一致,当镜像启动时可以直接访问。下面是mnist镜像的访问示例,该镜像内含mnist数据集训练的模型,可以识别手写数字。其中listen_ip为容器IP,您可以通过启动自定义镜像,在容器中获取容器IP。 请求示例 curl -X POST \ http://{listen_ip}:8080/ \ -F images=@seven.jpg 图1 listen_ip获取示例 返回示例 {"mnist_result": 7} (可选)健康检查接口 如果在滚动升级时要求不中断业务,那么必须在config.json文件中配置健康检查的接口,供ModelArts调用,在config.json文件中配置。当业务可提供正常服务时,健康检查接口返回健康状态,否则返回异常状态。 如果要实现无损滚动升级,必须配置健康检查接口。 自定义镜像如果需要在“在线服务”模块使用OBS外部存储挂载功能,需要新建一个OBS挂载专属目录如“/obs-mount/”,避免选择存量目录覆盖已有文件。OBS挂载仅开放对挂载目录文件新增、查看、修改功能不支持删除挂载目录文件对象,若需要删除文件请到OBS并行文件系统中手动删除。 健康检查接口示例如下。 URI GET /health 请求示例curl -X GET \ http://{listen_ip}:8080/health 响应示例 {"health": "true"} 状态码 表1 状态码 状态码 编码 状态码说明 200 OK 请求成功 日志文件输出 为保证日志内容可以正常显示,日志信息需要打印到标准输出。 镜像启动入口 如果需要部署批量服务,镜像的启动入口文件需要为“/home/run.sh”,采用CMD设置默认启动路径,例如Dockerfile如下: CMD ["sh", "/home/run.sh"] 镜像依赖组件 如果需要部署批量服务,镜像内需要安装python、jre/jdk、zip等组件包。 (可选)保持Http长链接,无损滚动升级 如果需要支持滚动升级的过程中不中断业务,那么需要将服务的Http的“keep-alive”参数设置为200s。以gunicorn服务框架为例,gunicorn缺省情形下不支持keep-alive,需要同时安装gevent并配置启动参数“--keep-alive 200 -k gevent”。不同服务框架参数设置有区别,请以实际情况为准。 (可选)处理SIGTERM信号,容器优雅退出 如果需要支持滚动升级的过程中不中断业务,那么需要在容器中捕获SIGTERM信号,并且在收到SIGTERM信号之后等待60秒再优雅退出容器。提前优雅退出容器可能会导致在滚动升级的过程中业务概率中断。要保证容器优雅退出,从收到SIGTERM信号开始,业务需要将收到的请求全部处理完毕再结束,这个处理时长最多不超过90秒。例如run.sh如下所示: #!/bin/bash gunicorn_pid="" handle_sigterm() { echo "Received SIGTERM, send SIGTERM to $gunicorn_pid" if [ $gunicorn_pid != "" ]; then sleep 60 kill -15 $gunicorn_pid # 传递 SIGTERM 给gunicorn进程 wait $gunicorn_pid # 等待gunicorn进程完全终止 fi } trap handle_sigterm TERM 父主题: 使用自定义镜像创建AI应用(推理部署)
-
关联服务介绍 使用自定义镜像功能可能涉及以下云服务: 容器镜像服务 、 对象存储服务 、弹性云服务器。 容器 镜像服务 容器镜像服务(Software Repository for Container,SWR)是一种支持镜像全生命周期管理的服务, 提供简单易用、安全可靠的镜像管理功能,帮助您快速部署容器化服务。您可以通过界面、社区CLI和原生API上传、下载和管理容器镜像。 ModelArts训练和创建AI应用使用的自定义镜像需要从SWR服务管理列表获取。您制作的自定义镜像需要上传至SWR服务。 图1 获取镜像列表 对象存储服务 对象存储服务(Object Storage Service,OBS)是一个基于对象的海量存储服务,为客户提供海量、安全、高可靠、低成本的数据存储能力。 在创建训练作业和创建AI应用时往往存在数据交互,您需要的数据可以存储至OBS服务。 弹性云服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、内存、操作系统、云硬盘组成的基础的计算组件。弹性云服务器创建成功后,您就可以像使用自己的本地PC或物理服务器一样,在云上使用弹性云服务器。 在制作自定义镜像时,您可以在本地环境或者ECS上完成自定义镜像制作。 在您使用自定义镜像功能时,ModelArts可能需要访问您的容器镜像服务SWR、对象存储服务OBS等依赖服务,若没有授权,这些功能将不能正常使用。建议您使用委托授权功能,将依赖服务操作权限委托给ModelArts服务,让ModelArts以您的身份使用依赖服务,代替您进行一些资源操作。详细操作参见使用委托授权。
-
自定义镜像的制作流程 购买弹性云服务器或者应用本地主机搭建Docker环境。 在本地环境拉取基础镜像。 根据您的实际需求编写Dockerfile文件构建自定义镜像。如何高效编写Dockerfile指导可参考SWR服务最佳实践。 如果您使用自定义镜像用于训练作业请参考示例训练作业自定义镜像规范。 如果您使用自定义镜像用于创建AI应用请参考示例创建AI应用的自定义镜像规范。 当完成自定义镜像制作后,请参考上传镜像至容器镜像服务将镜像上传到自己的SWR中。
-
自定义镜像使用场景 用于训练模型 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以基于ModelArts提供的基础镜像包制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 用于创建AI应用 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为AI应用,并支持进行统一管理和部署为服务。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格