云服务器内容精选

  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.SparkHbasetoHbase --master yarn --deploy-mode client /opt/female/SparkHbasetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 bin/spark-submit --master yarn --deploy-mode client --conf spark.yarn.user.classpath.first=true --jars /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbase-1.0.jar,/opt/female/protobuf-java-2.5.0.jar /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbasePythonExample.py
  • 打包项目 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt/female/” )下。 运行样例程序前,需要在Spark客户端的“spark-defaults.conf”配置文件中将配置项“spark.yarn.security.credentials.hbase.enabled”设置为“true”(该参数值默认为“false”,改为“true”后对已有业务没有影响。如果要卸载HBase服务,卸载前请将此参数值改回“false”)。
  • 场景说明 假定HBase的table1表存储用户当天消费的金额信息,table2表存储用户历史消费的金额信息。 现table1表有记录key=1,cf:cid=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 数据规划 使用Spark-Beeline工具创建Spark和HBase表table1、table2,并通过HBase插入数据。 确保JD BCS erver已启动。然后在Spark2x客户端,使用Spark-Beeline工具执行如下操作。 使用Spark-Beeline工具创建Spark表table1。 create table table1 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table1", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table1', '1', 'cf:cid', '100' 使用Spark-Beeline工具创建Spark表table2。 create table table2 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table2", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000'
  • 数据规划 使用Spark-Beeline工具创建Spark和HBase表table1、table2,并通过HBase插入数据。 确保JDB CS erver已启动。登录Spark2x客户端节点。 使用Spark-Beeline工具创建Spark表table1。 create table table1 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table1", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table1', '1', 'cf:cid', '100' 使用Spark-Beeline工具创建Spark表table2。 create table table2 ( key string, cid string ) using org.apache.spark.sql.hbase.HBaseSource options( hbaseTableName "table2", keyCols "key", colsMapping "cid=cf.cid"); 通过HBase插入数据,命令如下: put 'table2', '1', 'cf:cid', '1000'
  • 运行任务 进入Spark客户端目录,调用bin/spark-submit脚本运行代码,运行命令分别如下(类名与文件名等请与实际代码保持一致,此处仅为示例): 运行Java或Scala样例代码 bin/spark-submit --jars --conf spark.yarn.user.classpath.first=true --class com.huawei.bigdata.spark.examples.SparkHbasetoHbase --master yarn --deploy-mode client /opt/female/SparkHbasetoHbase-1.0.jar 运行Python样例程序 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。将所提供 Java代码使用maven打包成jar,并放在相同目录下,运行python程序时要使用--jars把jar包加载到classpath中。 bin/spark-submit --master yarn --deploy-mode client --conf spark.yarn.user.classpath.first=true --jars /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbase-1.0.jar,/opt/female/protobuf-java-2.5.0.jar /opt/female/SparkHbasetoHbasePythonExample/SparkHbasetoHbasePythonExample.py
  • 场景说明 假定HBase的table1表存储用户当天消费的金额信息,table2表存储用户历史消费的金额信息。 现table1表有记录key=1,cf:cid=100,表示用户1在当天消费金额为100元。 table2表有记录key=1,cf:cid=1000,表示用户1的历史消息记录金额为1000元。 基于某些业务要求,要求开发Spark应用程序实现如下功能: 根据用户名累计用户的历史消费金额,即用户总消费金额=100(用户当天的消费金额) + 1000(用户历史消费金额)。 上例所示,运行结果table2表用户key=1的总消费金融为cf:cid=1100元。
  • 代码样例 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。 下面代码片段仅为演示,具体代码参见SparkHbasetoHbasePythonExample: # -*- coding:utf-8 -*- from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession,设置kryo序列化 spark = SparkSession\ .builder\ .appName("SparkHbasetoHbase") \ .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \ .config("spark.kryo.registrator", "com.huawei.bigdata.spark.examples.MyRegistrator") \ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.SparkHbasetoHbase') # 创建类实例并调用方法 spark._jvm.SparkHbasetoHbase().hbasetohbase(spark._jsc) # 停止SparkSession spark.stop()
  • 代码样例 由于pyspark不提供Hbase相关api,本样例使用Python调用Java的方式实现。 下面代码片段仅为演示,具体代码参见SparkHbasetoHbasePythonExample: # -*- coding:utf-8 -*- from py4j.java_gateway import java_import from pyspark.sql import SparkSession # 创建SparkSession,设置kryo序列化 spark = SparkSession\ .builder\ .appName("SparkHbasetoHbase") \ .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") \ .config("spark.kryo.registrator", "com.huawei.bigdata.spark.examples.MyRegistrator") \ .getOrCreate() # 向sc._jvm中导入要运行的类 java_import(spark._jvm, 'com.huawei.bigdata.spark.examples.SparkHbasetoHbase') # 创建类实例并调用方法 spark._jvm.SparkHbasetoHbase().hbasetohbase(spark._jsc) # 停止SparkSession spark.stop()