云服务器内容精选

  • 数据规划 在kafka中生成模拟数据(需要有Kafka权限用户)。 java -cp $SPARK_HOME/conf:$SPARK_HOME/jars/*:$SPARK_HOME/jars/streamingClient010/*:{ClassPath} com.huawei.bigdata.spark.examples.KafkaADEventProducer {BrokerList} {timeOfProduceReqEvent} {eventTimeBeforeCurrentTime} {reqTopic} {reqEventCount} {showTopic} {showEventMaxDelay} {clickTopic} {clickEventMaxDelay} 确保集群安装完成,包括HDFS、Yarn、Spark2x和Kafka。 启动Kafka的Producer,向Kafka发送数据。 {ClassPath}表示工程jar包的存放路径,详细路径由用户指定,可参考在Linux环境中编包并运行Spark程序章节中导出jar包的操作步骤。 命令举例: java -cp /opt/client/Spark2x/spark/conf:/opt/StructuredStreamingADScalaExample-1.0.jar:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/* com.huawei.bigdata.spark.examples.KafkaADEventProducer 10.132.190.170:21005,10.132.190.165:21005 2h 1h req 10000000 show 5m click 5m 此命令将在kafka上创建3个topic:req、show、click,在2h内生成1千万条请求事件数据,请求事件的时间取值范围为{当前时间-1h 至 当前时间},并为每条请求事件随机生成0-5条展示事件,展示事件的时间取值范围为{请求事件时间 至请求事件时间+5m },为每条展示事件随机生成0-5条点击事件,点击事件的时间取值范围为{展示事件时间 至展示事件时间+5m }
  • 场景说明 假定一个广告业务,存在广告请求事件、广告展示事件、广告点击事件,广告主需要实时统计有效的广告展示和广告点击数据。 已知: 终端用户每次请求一个广告后,会生成广告请求事件,保存到kafka的adRequest topic中。 请求一个广告后,可能用于多次展示,每次展示,会生成广告展示事件,保存到kafka的adShow topic中。 每个广告展示,可能会产生多次点击,每次点击,会生成广告点击事件,保存到kafka的adClick topic中。 广告有效展示的定义如下: 请求到展示的时长超过A分钟算无效展示。 A分钟内多次展示,每次展示事件为有效展示。 广告有效点击的定义如下: 展示到点击时长超过B分钟算无效点击。 B分钟内多次点击,仅首次点击事件为有效点击。 基于此业务场景,模拟简单的数据结构如下: 广告请求事件 数据结构:adID^reqTime 广告展示事件 数据结构:adID^showID^showTime 广告点击事件 数据结构:adID^showID^clickTime 数据关联关系如下: 广告请求事件与广告展示事件通过adID关联。 广告展示事件与广告点击事件通过adID+showID关联。 数据要求: 数据从产生到到达流处理引擎的延迟时间不超过2小时 广告请求事件、广告展示事件、广告点击事件到达流处理引擎的时间不能保证有序和时间对齐
  • 打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为该文件所在客户端服务器的实际路径。例如:“/opt/female/user.keytab”,“/opt/female/krb5.conf”。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“ /opt” )下。
  • 数据规划 在kafka中生成模拟数据(需要有Kafka权限用户)。 java -cp $SPARK_HOME/conf:$SPARK_HOME/jars/*:$SPARK_HOME/jars/streamingClient010/*:{ClassPath} com.huawei.bigdata.spark.examples.KafkaADEventProducer {BrokerList} {timeOfProduceReqEvent} {eventTimeBeforeCurrentTime} {reqTopic} {reqEventCount} {showTopic} {showEventMaxDelay} {clickTopic} {clickEventMaxDelay} 确保集群安装完成,包括HDFS、Yarn、Spark2x和Kafka。 将Kafka的Broker配置参数“allow.everyone.if.no.acl.found”的值修改为“true”。 启动Kafka的Producer,向Kafka发送数据。 {ClassPath}表示工程jar包的存放路径,详细路径由用户指定,可参考在Linux环境中编包并运行Spark程序章节中导出jar包的操作步骤。 命令举例: java -cp /opt/client/Spark2x/spark/conf:/opt/StructuredStreamingADScalaExample-1.0.jar:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/* com.huawei.bigdata.spark.examples.KafkaADEventProducer 10.132.190.170:21005,10.132.190.165:21005 2h 1h req 10000000 show 5m click 5m 此命令将在kafka上创建3个topic:req、show、click,在2h内生成1千万条请求事件数据,请求事件的时间取值范围为{当前时间-1h 至 当前时间},并为每条请求事件随机生成0-5条展示事件,展示事件的时间取值范围为{请求事件时间 至请求事件时间+5m },为每条展示事件随机生成0-5条点击事件,点击事件的时间取值范围为{展示事件时间 至展示事件时间+5m }
  • 场景说明 假定一个广告业务,存在广告请求事件、广告展示事件、广告点击事件,广告主需要实时统计有效的广告展示和广告点击数据。 已知: 终端用户每次请求一个广告后,会生成广告请求事件,保存到kafka的adRequest topic中。 请求一个广告后,可能用于多次展示,每次展示,会生成广告展示事件,保存到kafka的adShow topic中。 每个广告展示,可能会产生多次点击,每次点击,会生成广告点击事件,保存到kafka的adClick topic中。 广告有效展示的定义如下: 请求到展示的时长超过A分钟算无效展示。 A分钟内多次展示,每次展示事件为有效展示。 广告有效点击的定义如下: 展示到点击时长超过B分钟算无效点击。 B分钟内多次点击,仅首次点击事件为有效点击。 基于此业务场景,模拟简单的数据结构如下: 广告请求事件 数据结构:adID^reqTime 广告展示事件 数据结构:adID^showID^showTime 广告点击事件 数据结构:adID^showID^clickTime 数据关联关系如下: 广告请求事件与广告展示事件通过adID关联。 广告展示事件与广告点击事件通过adID+showID关联。 数据要求: 数据从产生到到达流处理引擎的延迟时间不超过2小时 广告请求事件、广告展示事件、广告点击事件到达流处理引擎的时间不能保证有序和时间对齐
  • 场景说明 假定一个广告业务,存在广告请求事件、广告展示事件、广告点击事件,广告主需要实时统计有效的广告展示和广告点击数据。 已知: 终端用户每次请求一个广告后,会生成广告请求事件,保存到kafka的adRequest topic中。 请求一个广告后,可能用于多次展示,每次展示,会生成广告展示事件,保存到kafka的adShow topic中。 每个广告展示,可能会产生多次点击,每次点击,会生成广告点击事件,保存到kafka的adClick topic中。 广告有效展示的定义如下: 请求到展示的时长超过A分钟算无效展示。 A分钟内多次展示,每次展示事件为有效展示。 广告有效点击的定义如下: 展示到点击时长超过B分钟算无效点击。 B分钟内多次点击,仅首次点击事件为有效点击。 基于此业务场景,模拟简单的数据结构如下: 广告请求事件 数据结构:adID^reqTime 广告展示事件 数据结构:adID^showID^showTime 广告点击事件 数据结构:adID^showID^clickTime 数据关联关系如下: 广告请求事件与广告展示事件通过adID关联。 广告展示事件与广告点击事件通过adID+showID关联。 数据要求: 数据从产生到到达流处理引擎的延迟时间不超过2小时 广告请求事件、广告展示事件、广告点击事件到达流处理引擎的时间不能保证有序和时间对齐
  • 数据规划 在kafka中生成模拟数据(需要有Kafka权限用户)。 java -cp $SPARK_HOME/conf:$SPARK_HOME/jars/*:$SPARK_HOME/jars/streamingClient010/*:{ClassPath} com.huawei.bigdata.spark.examples.KafkaADEventProducer {BrokerList} {timeOfProduceReqEvent} {eventTimeBeforeCurrentTime} {reqTopic} {reqEventCount} {showTopic} {showEventMaxDelay} {clickTopic} {clickEventMaxDelay} 确保集群安装完成,包括HDFS、Yarn、Spark2x和Kafka。 将Kafka的Broker配置参数“allow.everyone.if.no.acl.found”的值修改为“true”。 启动Kafka的Producer,向Kafka发送数据。 {ClassPath}表示工程jar包的存放路径,详细路径由用户指定,可参考在Linux环境中调测Spark应用章节中导出jar包的操作步骤。 命令举例: java -cp /opt/client/Spark2x/spark/conf:/opt/StructuredStreamingADScalaExample-1.0.jar:/opt/client/Spark2x/spark/jars/*:/opt/client/Spark2x/spark/jars/streamingClient010/* com.huawei.bigdata.spark.examples.KafkaADEventProducer 10.132.190.170:21005,10.132.190.165:21005 2h 1h req 10000000 show 5m click 5m 此命令将在kafka上创建3个topic:req、show、click,在2h内生成1千万条请求事件数据,请求事件的时间取值范围为{当前时间-1h 至 当前时间},并为每条请求事件随机生成0-5条展示事件,展示事件的时间取值范围为{请求事件时间 至请求事件时间+5m },为每条展示事件随机生成0-5条点击事件,点击事件的时间取值范围为{展示事件时间 至展示事件时间+5m }