云服务器内容精选
-
部署图 部署图用于大型和复杂系统的另一张专门图,其中软件部署在多个系统上,元素介绍如下表所示: 表1 部署图元素介绍 元素名 图标 含义 Node 部署节点。 Device 设备节点。 DeploymentSpecification 部署规格。 ExecutionEnvironment 执行环境。 Artifact 制品是被软件开发过程所利用或通过软件开发过程所生产的一段信息,如外部文档或工作产物。 制品可以是一个模型、描述或软件。 Component 组件,可独立加载、部署和运行的二进制代码,采用轻量级通讯机制、松耦合高内聚的软件架构构建单元,部署时不能跨节点类型部署(计算机百科全书:组件是软件系统中具有相对独立功能、接口由契约指定、和语境有明显依赖关系、可独立部署、可组装的软件实体)。 Interface 接口,可以是单个接口,也可以是抽象的一组接口的组合。 圆形接口与矩形接口意义相同,仅形状不同。 Package 包。 Composition 组合,是整体与部分的关系,但部分不能离开整体而单独存在。 Aggregation 聚合,是整体与部分的关系,且部分可以离开整体而单独存在。 Realization 实现,是一种类与接口的关系,表示类是接口所有特征和行为的实现。 Dependency 依赖,是一种使用的关系,即一个类的实现需要另一个类的协助。 Usage 使用,是一种使用的关系。表明一个模块在运行的时候,需要使用另外一个模块。 Generalization 通用化,是一种继承关系,一个类(通用元素)的所有信息(属性或操作)能被另一个类(具体元素)继承,不仅可以有属于类自己的信息,而且还拥有被继承类的信息。 Manifest Repo和对应的逻辑设计对象使用"Manifest”连接 表示由此代码仓的代码实现此设计对象的功能。 Deployment 描述现实世界环境运行系统的配置的开发步骤。 Association 关联,是一种拥有的关系,它使一个类知道另一个类的属性和方法。 部署图一般用于: 嵌入式系统建模(硬件之间的交互)。 客户端/服务器系统建模(用户界面与数据的分离)。 分布式系统建模(多级服务器)。 父主题: UML建模
-
包图 包图元素介绍如下表所示: 表1 包图元素介绍 元素名 图标 含义 Subsystem 作为且有规范、实现和身份的单元的包。 Package 包。 Access 访问依赖关系用一个从客户包指向提供者包的虚箭头表示。 Merge 合并连接器,定义了源包元素与目标包同名元素之间的泛化关系。源包元素的定义被扩展来包含目标包元素定义。当源包元素与目标包内没有同名元素时,目标包元素的定义不受影响。 Import 用虚线箭头从得到访问权限的包指向提供者所在的包。 Dependency 依赖,是一种使用的关系,即一个类的实现需要另一个类的协助。 依赖关系用两个模型元素之间的虚线箭头表示。箭尾处的模型元素(客户)依赖于箭头处的模型元素(服务者)。 包图示例,如下图所示: 父主题: UML建模
-
状态机图 状态机图元素介绍如下表所示: 表1 状态机图元素介绍 元素名 图标 含义 State 对象的生命中的满足一定条件,执行一定操作,或者等待某事件的条件或者情况。 StateMachine 状态机是展示状态与状态转换的图。通常一个状态机依附于一个类,并且描述一个类的实例对接收到的事件所发生的反应。 Fork Join Fork,复杂转换中,一个源状态可以转入多个目标状态,使活动状态的数目增加。 Join,状态机活动图或顺序图中的一个位置,在此处有两个或以上并列线程或状态归结为一个线程或状态。 Fork Join Fork,复杂转换中,一个源状态可以转入多个目标状态,使活动状态的数目增加。 Join,状态机活动图或顺序图中的一个位置,在此处有两个或以上并列线程或状态归结为一个线程或状态。 Initial 用来指明其默认起始位置的伪状态。 Junction 结合状态,作为一个综合转换一部分的伪状态,它在转换执行中不打断运行至完成步骤。 Deep History 历史状态可以记忆浅历史和深历史。深历史状态记忆组成状态中更深的嵌套层次的状态。要记忆深状态,转换必须直接从深状态中转出。 Shallow History 浅历史状态保存并激活与历史状态在同一个嵌套层次上的状态。 EntryPoint 进入某一状态时执行的动作 ExitPoint 离开某一状态时执行的动作。 Final 组成状态中的一个特殊状态,当它处于活动时,说明组成状态已经执行完成。 Flow Final Flow Final元素描述了系统的退出,与Activity Final相反,后者代表Activity的完成。 Synch 一个特殊的状态,它可以实现在一个状态机里的两个并发区域之间的控制同步。 Choice 选择,代表多个路径选择。 Terminate 终止。 Transition 转换用实线箭头表示,从一个状态(源状态)到另一个状态(目标状态),用一条转换线标注。 Object flow 各种控制流表示了对象间的关系、对象和产生它(作输出)或使用它(作输入)的操作或转换间的关系。 状态机图示例,如下图所示: 父主题: UML建模
-
运行视图概述 运行视图面向系统运行,描述系统启动过程、运行期交互的视图,主要解决系统运行期交互,描述各可执行交付件在运行期的交互关系。 表1 运行视图 模型类别 描述 运行模型(可选) 运行模型描述系统运行期间的关系,从进程的维度描述系统运行时的交互过程和关键数据流。 运行模型-顺序图(必选) 运行模型-顺序图模型是从逻辑模型中的架构对象维度描述系统运行时的交互过程以及关键的数据流。 运行模型-活动图(可选) 运行模型-活动图展示了从起点到终点的工作流程,详细说明了在活动的进展中存在的许多决策路径。 父主题: 运行视图
-
开发视图概述 开发视图面向系统开发及软件管理,描述系统代码结构,构建结构的视图,主要解决系统技术实现和开发的问题,它依托逻辑视图,描述代码、构建结构。 模型类别 描述 代码模型(必选) 代码模型定义代码结构以及代码元素逻辑模型中逻辑元素的对应关系,建立逻辑元素到代码仓或者代码目录的映射关系,以实现软件源代码的显示管理。 构建模型(必选) 构建模型定义软件编译构建结构及工具链,构建模型建立代码到运行期文件的映射和追溯关系。 父主题: 开发视图
-
建模步骤 创建构建模型。 创建新的构建模型图或者在已有的构建模型图中进行画图设计,如果设计内容过多,可根据实际情况将内容进行拆分,创建多个构建模型图,在对应的构建模型图中去建立关系。 引用代码元素到构建模型。 将代码元素引用到构建模型中跟代码模型中的步骤2一样,有两种方式,从工程树上将代码元素拖入到构建模型图中选link方式引用 ;另一种从代码模型图中多选复制元素,以引用方式粘贴到构建模型图中。 建立代码元素与构建元素的Build From构建关系。 在步骤2中将代码元素引用到构建模型图后,再从工具箱中构建模型图形库中拖入构建元素,创建与代码元素需要建立关系的构建元素,并建立构建元素与代码元素的Build From关系,同时需要创建一些构建过程中构建元素使用到的构建工具和依赖的构建环境、平台等信息,并建其中的连线关系。
-
用例视图概述 用例视图以用例作为驱动元素,驱动和验证其他四个视图的设计,用例视图不增加设计元素,仅增加用例作为输入,因此作为+1视图。 模型类别 描述 上下文模型(必选) 上下文模型描述系统和外部环境(包括人、系统及外部实体)之间的关系,依赖和交互。通过上下文模型可以显示定义系统的范围、职责、边界。 用例模型(必选) 用例模型描述系统的关键用例和交互场景,用于描述系统与外界的交互关系。其中关键用例部分主要描述系统基本的业务用例模型,以及增量版本中影响架构的用例模型;而交互场景描述系统与外部实体之间复杂的交互关系图,采用UML顺序图进行描述绘制,帮助描述隐含的需求和约束,以及系统的验证。 父主题: 用例视图
-
运行模型(活动图) “运行模型-活动图”展示了从起点到终点的工作流程,详细说明了在活动的进展中存在的许多决策路径。 活动图对用户和系统遵循流程的行为进行建模,它们是流程图或工作流的一种,但是它们使用的形状略有不同,元素介绍如下表所示: 表1 活动图元素介绍 元素名 图标 含义 Action 动作是可执行的原子计算,它导致模型状态的改变和返回值。 Activity 活动是状态机内正在进行的非原子执行。 StructuredActivity 结构化活动是一个活动节点,可以将下级节点作为独立的活动组。 CentralBufferNode 中央缓冲区节点是一个对象节点,用于管理活动图中表示的来自多个源和目标的流。 Datastore 数据存储区定义了永久存储的数据。 ExceptionHandlerNode 异常处理程序元素定义发生异常时要执行的一组操作。 Object 封装了状态和行为的具有良好定义界面和身份的离散实体,即对象实例。 Decision 是状态机中的一个元素,在它当中一个独立的触发可能导致多个可能结果,每个结果有它自己的监护条件。 Merge 状态机中的一个位置,两个或多个可选的控制路径在此汇合或"无分支"。 Send 即发送者对象生成一个信号实例并把它传送到接收者对象以传送信息。 Receive 接收就是处理从发送者传送过来的消息实例。 Partition 分区元素用于逻辑组织活动的元素。 Partition 分区元素用于逻辑组织活动的元素。 Initial 用来指明其默认起始位置的伪状态。 Final 组成状态中的一个特殊状态,当它处于活动时,说明组成状态已经执行完成。 Flow Final Flow Final元素描述了系统的退出,与Activity Final相反,后者代表Activity的完成。 Synch 一个特殊的状态,它可以实现在一个状态机里的两个并发区域之间的控制同步。 Fork Join Fork,复杂转换中,一个源状态可以转入多个目标状态,使活动状态的数目增加。 Join,状态机活动图或顺序图中的一个位置,在此处有两个或以上并列线程或状态归结为一个线程或状态。 Fork Join (Fork)复杂转换中,一个源状态可以转入多个目标状态,使活动状态的数目增加。 (Join)状态机活动图或顺序图中的一个位置,在此处有两个或以上并列线程或状态归结为一个线程或状态。 Region 并发区域。 Control Flow (控制流)在交互中,控制的后继轨迹之间的关系。 Object Flow (对象流)各种控制流表示了对象间的关系、对象和产生它(作输出)或使用它(作输入)的操作或转换间的关系。 Constraint 是一个语义条件或者限制的表达式。UML 预定义了某些约束,其他可以由建模者自行定义。 Exception Handler 异常处理。捕获异常根据异常类型查找到对应的异常处理方法,然后执行对应的方法。 Interrupt Flow 中断流是用于定义异常处理程序和可中断活动区域的连接器的两个UML概念的连接。中断流是活动边缘的一种。它通常用于活动图中,以对活动过渡进行建模。 Anchor 锚点。 Containment 内嵌,表示嵌在内部的类。 活动图示例如下所示: 父主题: 运行视图
-
逻辑视图概述 逻辑视图面向系统逻辑分析和设计,描述系统逻辑结构的视图,主要解决系统分析和设计的问题,它描述系统的业务上下文、系统的逻辑分解,以及分解出的逻辑元素间的关系。 模型类别 描述 逻辑模型(必选) 逻辑模型描述系统的逻辑功能模块分解,将系统分解为相应的逻辑功能元素,并描述各逻辑功能元素之间的关系。 数据模型(强数据场景必选) 数据模型定义系统的关键数据设计,包括关键数据结构设计、数据流,以及数据所有权等。 领域模型(可选) 领域模型描述业务域的概念及其关系,是立足于业务域的分析模型,它通过业务问题域的分析和建模,抽象出领域概念,建立统一的业务语言,从而指导后续的架构设计工作。 功能模型(可选) 功能模型描述按功能分解出特性、功能组、功能元素,以及它们之间的依赖关系。 技术模型(必选) 技术模型定义系统采用的关键技术部件和技术栈,包括整体框架技术,公共机制,基础设施,公共服务/组件,以及各逻辑功能元素的技术方案等。 父主题: 逻辑视图
-
4+1视图概述 4+1视图是一组相关联模型的集合,从不同的视角,反映不同利益干系人的关注点。通过逻辑、开发、部署、运行4个典型视角描述系统的各个切面,以用例串接和验证各切面设计。 在架构设计说明书模板中的4+1架构视图模型结构如下图所示: 图1 4+1架构视图模型结构图 表1 视图类型与描述 视图类型 描述 逻辑视图 逻辑视图面向系统逻辑分析和设计,是描述系统逻辑结构的视图,主要解决系统分析和设计的问题,它描述系统的业务上下文、系统的逻辑分解,以及分解出的逻辑元素间的关系。 开发视图 开发视图面向系统开发及软件管理,是描述系统代码结构,构建结构的视图,主要解决系统技术实现和开发的问题,它依托逻辑视图,描述代码、构建结构。 运行视图 运行视图面向系统运行,是描述系统启动过程、运行期交互的视图,主要解决系统运行期交互,描述各可执行交付件在运行期的交互关系。 部署视图 部署视图面向系统部署,是描述系统的交付、安装、部署的视图,主要解决系统安装部署的问题,描述系统的交付、安装、部署关系。 用例视图 用例视图以用例作为驱动元素,驱动和验证其他四个视图的设计,用例视图不增加设计元素,仅增加用例作为输入,因此作为“+1”视图。 父主题: 4+1视图建模
-
部署视图概述 部署视图面向系统部署,描述系统的交付、安装、部署的视图,主要解决系统安装部署的问题,描述系统的交付、安装、部署关系。 表1 部署视图 模型类别 描述 交付模型(必选) 交付模型定义的是从构建结果和外部软件一起打包成最终交付给客户的Release Offering的模型设计过程。 部署模型(必选) 部署模型定义产品的部署关系,它依托于构建模型或交付模型,描述每个构建文件或者交付件以及相应的软件部署实体的部署依赖关系和部署约束。 父主题: 部署视图
-
建模步骤 创建上下文模型。 您可以使用初始化创建的上下文模型或者创建新的上下文模型,在目录节点右键“新增图”,如果一个系统的交互的外部角色过多时,不适合在一张上下文模型图中建模时,用户可根据外部角色的分类或者产品的应用场景创建不同的上下文模型。 建立系统与外部角色的关系。 在上下文模型中描述系统与外部角色的关系通过接口体现,不直接使用连线表示;在上下文模型中需要定义外部角色、交互接口、外部系统、系统,其中系统如果在逻辑模型中已经定义过,则在上下文模型中不能再重复定义,从逻辑模型中引用至上下文模型中即可。
-
建模步骤 创建用例模型。 您可以使用工程初始化建好的用例模型或者在其它目录节点右键菜单中“新增图”,创建新的用例模型,如果用例场景较多,可以创建多个用例模型。 画用例模型。 用例模型包含系统基本业务的用例模型、以及增量版本中影响架构的用例模型,从上下文模型中将要用到的Actor角色插入到用例模型图中,再从工具箱中拖入要定义的Use Case元素,和系统边界元素,再建立关系,Actor与用例用的是Use连线关系。
-
2.3.5逻辑元素至少与一个代码元素存在manifest关系 详细描述 逻辑模型中的逻辑元素或从逻辑模型引用到代码模型中的逻辑元素至少要与一个代码元素中间有manifest连线关系。 当前规则支持配置检查类型后,已包含3.1.1的检查项,建议使用2.3.6检查项即可,3.1.1可不再重复检查。 检查范围 在逻辑模型图上创建出来的逻辑模型元素; 引用到代码模型中的逻辑元素; 排除Interface、Provided Interface、Required Interface元素。 如何检查 检查规则配置中勾选要检查的元素类型,服务、微服务、组件、模块是默认强制勾选的检查类型,检查这类元素在代码模型图中是否与代码元素存在manifest连线关系,由代码元素指向逻辑元素,不存在对应的代码元素则不符合规则 ,将该类逻辑元素列出到检查结果中。 正确示例 错误示例 引用过来的逻辑元素Interface没有对应任何代码元素。
-
4+1视图规范一致性检查错误修复指导 XX模型不能存在游离的逻辑模型元素 以逻辑模型为例: 游离原因:元素没有在逻辑模型架构信息树中出现。 查看逻辑模型架构方案设置。 找到游离元素构造型相关的架构配置信息。 Subsystem需要与System有Composition/Aggregation关系或父子关系。 在模型图中构建架构关系。 XX模型的元素要与指定的XX模型层次结构保持一致 以逻辑模型为例: 查询逻辑模型架构信息树,右侧操作开关把展示不匹配架构方案的元素打开。 架构信息树构出后 根据错误元素名称查询定位到其所在架构树节点。 查询错误元素与其他元素关系。 对比架构方案设置。 Subsystem1报错是因为与System1(架构信息树上的父节点)存在错误架构关系,对比发现实际模型图中使用的是Dependency连线 而架构配置方案要求Composition/Aggregation。 在模型图中修改连线类型为Composition/Aggregation。 常见错误场景: 连线类型不符合架构配置方案。 规则 实际 子元素构造型不符合架构配置方案。 System下层子元素按架构配置方案只能是Subsystem、Domain、Service、MS 图中是Component。 父主题: 架构检查
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格