云服务器内容精选
-
Hudi Cleaning操作说明 Cleaning用于清理不再需要的版本数据。 Hudi使用Cleaner后台作业,不断清除不需要的旧得版本的数据。通过配置hoodie.cleaner.policy和hoodie.cleaner.commits.retained可以使用不同的清理策略和保存的commit数量。 执行cleaning有两种方式: 同步clean由参数hoodie.clean.automatic控制,默认自动开启。 关闭同步clean: datasource写入时可以通过.option("hoodie.clean.automatic", "false")来关闭自动clean。 spark-sql写入时可以通过set hoodie.clean.automatic=false;来关闭自动clean。 异步clean可以使用spark-sql来执行。 更多clean相关参数请参考compaction&cleaning配置章节。 父主题: 数据管理维护
-
Hudi Cleaning操作说明 Cleaning用于清理不再需要的版本数据。 Hudi使用Cleaner后台作业,不断清除不需要的旧版本的数据。通过配置hoodie.cleaner.policy和hoodie.cleaner.commits.retained可以使用不同的清理策略和保存的commit数量。 执行cleaning有两种方式: 同步clean由参数hoodie.clean.automatic控制,默认自动开启。 关闭同步clean: datasource写入时可以通过.option("hoodie.clean.automatic", "false")来关闭自动clean。 spark-sql写入时可以通过set hoodie.clean.automatic=false;来关闭自动clean。 异步clean可以使用spark-sql来执行,详情可以参考章节CLEAN。 更多clean相关参数请参考compaction&cleaning配置章节。 父主题: 数据管理维护
-
注意事项 分区并发写控制基于单表并发写控制的基础上实现,因此使用约束条件与单表并控制写基本相同。 当前分区并发只支持Spark方式写入,Flink不支持该特性。 为避免过大并发量占用ZooKeeper过多资源,对Hudi在ZooKeeper上增加了Quota配额限制,可以通过服务端修改Spark组件中参数zk.quota.number来调整Hudi的Quota配额,默认为500000,最小为5,且不可通过此参数来控制并行任务数,仅用来控制对ZooKeeper的访问压力。
-
使用分区并发机制 通过设置参数:hoodie.support.partition.lock=true来启动分区并发写。 示例: spark datasource方式开启分区并发写: upsert_data.write.format("hudi"). option("hoodie.datasource.write.table.type", "COPY_ON_WRITE"). option("hoodie.datasource.write.precombine.field", "col2"). option("hoodie.datasource.write.recordkey.field", "primary_key"). option("hoodie.datasource.write.partitionpath.field", "col0"). option("hoodie.upsert.shuffle.parallelism", 4). option("hoodie.datasource.write.hive_style_partitioning", "true"). option("hoodie.support.partition.lock", "true"). option("hoodie.table.name", "tb_test_cow"). mode("Append").save(s"/tmp/huditest/tb_test_cow") spark-sql开启分区并发写: set hoodie.support.partition.lock=true; insert into hudi_table1 select 1,1,1;
-
Hudi Compaction操作说明 Compaction用于合并mor表Base和Log文件。 对于Merge-On-Read表,数据使用列式Parquet文件和行式Avro文件存储,更新被记录到增量文件,然后进行同步/异步compaction生成新版本的列式文件。Merge-On-Read表可减少数据摄入延迟,因而进行不阻塞摄入的异步Compaction很有意义。 异步Compaction会进行如下两个步骤: 调度Compaction:由入湖作业完成,在这一步,Hudi扫描分区并选出待进行compaction的FileSlice,最后CompactionPlan会写入Hudi的Timeline。 执行Compaction:一个单独的进程/线程将读取CompactionPlan并对FileSlice执行Compaction操作。 使用Compaction的方式分为同步和异步两种: 同步方式由参数hoodie.compact.inline控制,默认为true,自动生成compaction调度计划并执行compaction: 关闭同步compaction datasource写入时可以通过 .option("hoodie.compact.inline", "false") 来关闭自动compaction。 spark-sql写入时可以通过set hoodie.compact.inline=false;来关闭自动compaction。 仅同步生成compaction调度而不执行compaction ·datasource写入时可以通过以下option参数来实现: option("hoodie.compact.inline", "true"). option("hoodie.schedule.compact.only.inline", "true"). option("hoodie.run.compact.only.inline", "false"). ·spark-sql写入时可以通过set以下参数来实现: set hoodie.compact.inline=true; set hoodie.schedule.compact.only.inline=true; set hoodie.run.compact.only.inline=false; 异步方式由spark-sql来实现。 如果需要在异步compaction时只执行已经产生的compaction调度计划而不创建新的调度计划,则需要通过set命令设置以下参数: set hoodie.compact.inline=true; set hoodie.schedule.compact.only.inline=false; set hoodie.run.compact.only.inline=true; 更多compaction参数请参考compaction&cleaning配置章节。 为了保证入湖的最高效率,推荐使用同步产生compaction调度计划,异步执行compaction调度计划的方式。 父主题: 数据管理维护
-
Clustering架构 Hudi通过其写入客户端API提供了不同的操作,如insert/upsert/bulk_insert来将数据写入Hudi表。为了能够在文件大小和入湖速度之间进行权衡,Hudi提供了一个hoodie.parquet.small.file.limit配置来设置最小文件大小。用户可以将该配置设置为“0”,以强制新数据写入新的文件组,或设置为更高的值以确保新数据被“填充”到现有小的文件组中,直到达到指定大小为止,但其会增加摄取延迟。 为能够支持快速摄取的同时不影响查询性能,引入了Clustering服务来重写数据以优化Hudi 数据湖 文件的布局。 Clustering服务可以异步或同步运行,Clustering会添加了一种新的REPLACE操作类型,该操作类型将在Hudi元数据时间轴中标记Clustering操作。 Clustering服务基于Hudi的MVCC设计,允许继续插入新数据,而Clustering操作在后台运行以重新格式化数据布局,从而确保并发读写者之间的快照隔离。 总体而言Clustering分为两个部分: 调度Clustering:使用可插拔的Clustering策略创建Clustering计划。 识别符合Clustering条件的文件:根据所选的Clustering策略,调度逻辑将识别符合Clustering条件的文件。 根据特定条件对符合Clustering条件的文件进行分组。每个组的数据大小应为targetFileSize的倍数。分组是计划中定义的"策略"的一部分。此外还有一个选项可以限制组大小,以改善并行性并避免混排大量数据。 将Clustering计划以avro元数据格式保存到时间线。 执行Clustering:使用执行策略处理计划以创建新文件并替换旧文件。 读取Clustering计划,并获得ClusteringGroups,其标记了需要进行Clustering的文件组。 对于每个组使用strategyParams实例化适当的策略类(例如:sortColumns),然后应用该策略重写数据。 创建一个REPLACE提交,并更新HoodieReplaceCommitMetadata中的元数据。
-
Clustering架构 Hudi通过其写入客户端API提供了不同的操作,如insert/upsert/bulk_insert来将数据写入Hudi表。为了能够在文件大小和入湖速度之间进行权衡,Hudi提供了一个hoodie.parquet.small.file.limit配置来设置最小文件大小。用户可以将该配置设置为“0”,以强制新数据写入新的文件组,或设置为更高的值以确保新数据被“填充”到现有小的文件组中,直到达到指定大小为止,但其会增加摄取延迟。 为能够支持快速摄取的同时不影响查询性能,引入了Clustering服务来重写数据以优化Hudi数据湖文件的布局。 Clustering服务可以异步或同步运行,Clustering会添加了一种新的REPLACE操作类型,该操作类型将在Hudi元数据时间轴中标记Clustering操作。 Clustering服务基于Hudi的MVCC设计,允许继续插入新数据,而Clustering操作在后台运行以重新格式化数据布局,从而确保并发读写者之间的快照隔离。 总体而言Clustering分为两个部分: 调度Clustering:使用可插拔的Clustering策略创建Clustering计划。 识别符合Clustering条件的文件:根据所选的Clustering策略,调度逻辑将识别符合Clustering条件的文件。 根据特定条件对符合Clustering条件的文件进行分组。每个组的数据大小应为targetFileSize的倍数。分组是计划中定义的"策略"的一部分。此外还有一个选项可以限制组大小,以改善并行性并避免混排大量数据。 将Clustering计划以avro元数据格式保存到时间线。 执行Clustering:使用执行策略处理计划以创建新文件并替换旧文件。 读取Clustering计划,并获得ClusteringGroups,其标记了需要进行Clustering的文件组。 对于每个组使用strategyParams实例化适当的策略类(例如:sortColumns),然后应用该策略重写数据。 创建一个REPLACE提交,并更新HoodieReplaceCommitMetadata中的元数据。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格