云服务器内容精选

  • AutoGroup AutoGroup,使用自动分组技术探索高阶特征交互组合,更深层次地挖掘出多个特征间联系,增强模型排序效果。 表3 AutoGroup参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于该策略的描述信息。 最大交互阶数 算法探索的最大的特征交互阶数。例如,当设定最大交互阶数为4时,算法会探索2阶、3阶、4阶的特征交互组合。默认3。 各阶隐向量长度 各阶特征交互使用的隐向量长度,数量需对应最大交互阶数。默认10,60,80。 哈希长度 每阶特征交互所选择的group数量,数量需对应最大交互阶数。默认10,60,80。 特征交互层惩罚项系数 特征交互层输出值的惩罚项系数,用来防止过拟合。默认0.0001,0.0001,0.0001。 神经网络结构 神经网络的层数与每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0.8。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和 RMS Prop两种优化算法的优点,对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(Second Moment Estimation,即梯度的未中心化的方差)进行综合考虑,依次计算出更新步长。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 结构部分优化器 详细参数请参见优化器类型。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 隐向量层L2正则化系数 隐向量层使用的L2正则化系数,作用如“L2正则项系数”描述。默认0.001。 wide部分L2正则化系数 wide层使用的L2正则化系数,作用如“L2正则项系数”描述。默认0.001。 最大迭代轮数 模型训练的最大迭代轮数,默认50。 提前终止训练轮数 在测试集上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。 重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 融合多值特征 将多值特征的多个embedding融合成一个embedding。 融合线性部分 是否使用模型架构中的线性部分。 固定哈希结构 是否固定结构参数。默认值为“否”,非特殊情况建议使用默认值。
  • Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。 表1 逻辑斯蒂回归参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于该策略的描述信息。 最大迭代轮数 模型训练的最大迭代轮数,默认50。 提前终止训练轮数 在测试集上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。 初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0 标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为 均值为0,方差为 Var(wi)=1/nin 的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和RMSProp两种优化算法的优点,对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(Second Moment Estimation,即梯度的未中心化的方差)进行综合考虑,依次计算出更新步长。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。 重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。
  • DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于该策略的描述信息。 最大迭代轮数 模型训练的最大迭代轮数,默认50。 提前终止训练轮数 在测试集上连续N轮迭代AUC无提高时,迭代停止,训练提前结束,默认5。 初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0 标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为 均值为0,方差为 Var(wi)=1/nin 的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 adam:自适应矩估计算法 结合AdaGrad和RMSProp两种优化算法的优点,对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(Second Moment Estimation,即梯度的未中心化的方差)进行综合考虑,依次计算出更新步长。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数:叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 L2正则项系数 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。 隐向量长度 分解后的表示特征的向量的长度。默认10。 神经网络结构 神经网络的层数与每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0.8。 重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。
  • 排序策略-离线特征工程 表1 特征工程参数说明 参数名称 说明 名称 自定义离线特征工程名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征, 未选择的用户特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加用户特征。在下拉选项中勾选特征参数名称并进行配置。当“特征值类型”为“多值枚举型”时,您可以根据需求自定义枚举个数。其他类型可选的参数信息如下: “等距离散”:根据业务需求限定数值“最小值”、“最大值”和“距离”。例如,根据age进行等距离散,设置年龄最小值为1,最大值为100,离散距离为10。等距离散会按照age将1-10岁,11-20岁等作为一个区间进行离散。 “归一化”:归一化,根据业务需求限定数值“最小值”和“最大值”。例如,根据weight进行归一化,设置weight最小值为50,最大值为200。如果给定的数值x在该区间范围内则采用以下计算公式处理:“x_new = (x - 50) / (200-50)”,不在区间内的则按异常值处理,如x=80时,x_new = 0.2。 “用户自定义离散”:根据业务需求限定“离散点”。例如,根据age进行离散,设置年龄离散点分别为3、9、15即年龄会按照0-3、3-9、9-15进行散;单击添加离散点。 “不离散”:(默认)不做归一化,不对数据做处理。 待提取物品特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的物品特征,未选择的物品特征将不会被处理,即排序模块将忽略这些特征。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击,增加物品特征。在下拉选项中勾选特征参数名称并进行配置。当“特征值类型”为“多值枚举型”时,您可以根据需求自定义枚举个数。其他类型可选的参数信息如下: “等距离散”:根据业务需求限定数值“最小值”、“最大值”和“距离”。例如,根据order_price进行等距离散,设置价格最小值为1,最大值为100,离散距离为10。那么等距离散会按照价格将1-10元,11-20元等为一个区间进行离散。 “归一化”:归一化,根据业务需求限定数值“最小值”和“最大值”。例如,根据weight进行归一化,设置weight最小值为50,最大值为200。如果给定的数值x在该区间范围内则采用以下计算公式处理:“x_new = (x - 50) / (200-50)”,不在区间内的则按异常值处理,如x=80时,x_new = 0.2。 “用户自定义离散”:根据业务需求限定“离散点”。例如,根据order_price进行离散,设置价格离散点分别为150、200、250即价格会按照0-150、151-200、201-250进行散;单击添加离散点。 “不离散”:(默认)不做归一化,不对数据做处理。 自定义行为类型 如果开启“自定义行为类型”, 算法则按用户设置的行为类型及权重进行排序预处理任务,否则默认使用数据源中的行为类型及权重进行任务。 “正向行为类型”:设置正向行为的类型及权重值。 “负向行为类型”:设置负向行为的类型及权重值。 行为去重方式 将行为数据中某个用户对某个物品的多条记录进行去重,目前支持按行为权重去重(正向行为且权重越大的优先)和按时间去重(每天、每星期、每个月保留一条数据)。 “权重绝对值”:保留行为权重绝对值最高的一条数据。 “日期”:按照"时间类型", 保留指定区间的一条最新数据。 时间类型 将行为数据中某个用户对某个物品的多条记录进行去重, 只保留每个时间区间内的一条最新数据。您可以根据数据实际情况选择去重的时间周期,可选天、周、月。默认为“天”。 周一是第一天:行为数据按周去重,是否周一是第一天。 如果选择否, 则认为周日是第一天,保留每个时间区间内的一条最新数据。 训练集测试集划分方式 数据划分方式按时间比例或个数比例划分训练集测试集。 “时间比例”:将全部数据的时间跨度按照时间比例划分成两段数据,训练数据为前一段时间中的数据,测试数据为后一段时间的数据,取值TIME。 “个数比例”:个数比例是将全部数据按个数比例随机划分成训练集和测试集传入值。取值 RAM DOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “选择时间”:当 调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “具体时间”:选择具体的调度时间。 父主题: 算法介绍及参数说明
  • 创建特征工程 创建特征工程操作步骤如下: 在“离线作业”下,单击“特征工程”页签,单击上方“创建”,进入“创建特征工程”页面。 在“创建特征工程”页面,填写特征工程“名称”、“场景”和“描述”。 特征工程名称:请以“ETL-”开始,只能由字母、数字、中划线和下划线组成,并且长度小于64个字符。 “场景”信息可选择您在全局配置页面创建的场景。 设置计算引擎信息,指定“服务名”、“集群名称”、“任务配置地址”、“资源规格”等信息。 单击“添加特征工程”,根据业务需要在下拉框中选择一个合适的策略。初始用户画像-物品画像-标准宽表生成和排序样本预处理策略参数说明请单击策略名称进行查看。 (可选)在目标策略右侧,单击“删除”,可以删除该策略。 具体策略的参数说明可单击上方策略名称进行查看,策略设置完成后,单击“确定”。作业一般需要运行一段时间,根据您的数据量和资源不同,将耗时几分钟到几十分钟不等。 您可以前往特征工程列表,查看作业的基本情况。在作业列表中,刚创建的作业“状态”为“计算中”,当作业“状态”变为“计算成功”时,表示作业运行结束,可以将经过处理的数据应用于离线作业。当作业“状态”变为“计算失败”时,您可以单击作业的名称,进入详情页面,通过查看日志等手段处理问题。
  • 初始用户画像-物品画像-标准宽表生成 初始用户画像-物品画像-标准宽表生成,是将初始格式数据(离线数据)处理成用户画像、物品画像以及内部通用格式数据。 表1 初始用户画像-物品画像-标准宽表生成参数说明 参数名称 说明 数据源 数据在OBS的存放路径。包括用户属性表、物品属性表、用户操作行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表 对结果保存路径中已有宽表数据的保留方式: 否,不保留任何已有的数据。 是,保留全部已有的数据。 覆盖,将相同日期下的数据覆盖掉,保留不同日期下的数据。 结果保存路径 行为-用户-物品(通用格式)的保存路径。 说明: 使用初始用户画像-物品画像-标准宽表生成的数据时,其路径具体到文件夹即可。 结果存储平台 存储类型有用户画像表和物品画像表两种。 用户画像表:用户自定义CloudTable集群名称和表名,用于存储生成的用户数据。 物品画像表:用户自定义CloudTable集群名称和表名,用于存储生成的物品数据。 设置数据版本:您可以单击设置数据版本。RES的数据版本有两种,“V1”版本即数据按照原有格式存储,未做过分区处理。“V2”版本则会依照用户的分区设置做分区处理,当分区合理时,数据将均匀分布在各个节点,有效利用Cloudtable的高并发特性,提升读写效率。其中“预分区数量”和“索引分区数量”可以根据数据量进行设置,如果读写性能达不到要求,可以增加Cloudtable的RS单元数量提升性能。
  • 排序样本预处理 将内部通用格式数据处理成排序策略所要求的特定格式数据,同时进行离散化,数据编码等特征工程处理。 表2 排序样本预处理输入参数说明 参数名称 说明 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、排序算法、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 通用格式数据源根路径 通用格式生成所在的根目录,即用户提交初始初始用户画像-物品画像-标准宽表生成或基于行为数据的用户画像更新时所提供的结果保存路径。 行为起止日期 用户行为数据时间范围,可只有起始时间、结束时间或为空。 待提取用户特征 从全局特征信息文件中提取输入的用户特征进行排序模型训练。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击“”,增加用户特征。当“特征值类型”为“单值数值型”时,可选的参数信息如下: “等距离散”:根据业务需求限定数值“最小值”、“最大值”和“距离”。例如,根据age进行等距离散,设置年龄最小值为1,最大值为100,离散距离为10。等距离散会按照age将1-10岁,11-20岁等作为一个区间进行离散。 “等频离散”:根据业务需求限定数值“最小值”、“最大值”和“频率”。例如,根据weight进行等频离散,设置weight最小值为5,最大值为200,离散频率为200。等频离散会按照weight值的大小进行排序之后,以200个数值为一个区间进行离散。 “用户自定义离散”:根据业务需求限定数值“最小值”、“最大值”和“区间名称”。例如,根据age进行离散,设置年龄最小值为1,最大值为3,区间名称为“幼儿”;单击”添加区间,最小值为4,最大值为12,区间名称为“少儿”,则按照用户自定义的区间进行离散。 “不离散”:(默认)不做归一化,不对数据做处理。归一化,根据业务需求限定数值“最小值”和“最大值”。例如,根据weight进行归一化,设置weight最小值为50,最大值为200。如果给定的数值x在该区间范围内则采用以下计算公式处理:“x_new = (x - 50) / (200-50)”,不在区间内的则按异常值处理,如x=80时,x_new = 0.2。 待提取物品特征 从全局特征信息文件中提取输入的物品特征进行排序模型训练。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击“”,增加物品特征。当“特征值类型”为“单值数值型”时,可选的参数信息如下: “等距离散”:根据业务需求限定数值“最小值”、“最大值”和“距离”。例如,根据order_price进行等距离散,设置价格最小值为1,最大值为100,离散距离为10。那么等距离散会按照价格将1-10元,11-20元等为一个区间进行离散。 “等频离散”:根据业务需求限定数值“最小值”、“最大值”和“频率”。例如,根据weight进行等频离散,设置weight最小值为5,最大值为200,离散频率为200。那么等频离散会按照weight值的大小进行排序之后,以200个数值为一个区间进行离散。 “用户自定义离散”:根据业务需求限定数值“最小值”、“最大值”和“区间名称”。例如,根据order_price进行离散,设置价格最小值为1,最大值为156,区间名称为“低价区”;单击“”添加区间,最小值为157,最大值为500,区间名称为“中高价位区”,那么会按照用户自定义的区间进行离散。 “不离散”:(默认)不做归一化,不对数据做处理。归一化,根据业务需求限定数值“最小值”和“最大值”。例如,根据weight进行归一化,设置weight最小值为50,最大值为200。如果给定的数值x在该区间范围内则采用以下计算公式处理:“x_new = (x - 50) / (200-50)”,不在区间内的则按异常值处理,如x=80时,x_new = 0.2。 正反馈行为类型 用户自定义。行为类型来源于通用格式数据源中“behavior”字段中“actiontype”的值。单击“”,增加正反馈行为类型。您可以通过和来自定义权重。 负反馈行为类型 用户自定义。行为类型来源于通用格式数据源中“behavior”字段中“actiontype”的值。单击“”,增加负反馈行为类型。您可以通过和来自定义权重。 算子类型 排序数据处理算子类型。每一种排序算法都需要进行特定的数据处理,需要根据使用的排序算法来选择排序数据处理类型。LR、FM、FFM、DEEPFM、PIN这五种算法的数据处理互相通用。 训练集测试集划分方式 按时间或者比例来划分训练集测试集。 “TIME” 训练数据时间:训练数据起始时间和终止时间,该起始时间和终止时间不得超过行为数据的时间范围。 测试数据时间:测试数据起始时间和终止时间,该起始时间和终止时间不得超过行为数据的时间范围。 “RATE” 训练数据占比:生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比:生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 结果保存路径 单击选择所有输出数据在OBS的保存根路径,会在这个根路径下自动创建feature_map、features_info_online_use、fields_feature_size、test_data、train_data五个文件夹,分别保存特征映射、在线所需特征信息、域特征数量、测试集、训练集这五个文件。
  • 基于UCB的召回策略 基于UCB的召回策略综合考虑了用户操作行为表中,物品发生的某几种行为类型及次数,然后给每一个物品都计算一个得分,最终返回得分最高的若干个物品。 表8 基于UCB的召回策略参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 最小行为次数 在物品上产生过行为的最小用户数,其中一个用户在一个物品上只计算一次行为。默认为30。 折中参数 令alpha为Exploration 和 Exploitation之间的折中参数,其取值范围为[0,1],alpha越趋近于0,则物品的得分对历史得分高的物品越有利,即 Exploitation。反之,alpha越趋近于1,则物品的得分越倾向于探索新物品,即Exploration。默认为0.5。 最大推荐结果数 最多生成多少个推荐结果。默认为100。 该参数会运用在“输出数据”的推荐候选集上。 时间跨度(天) 用于指定从数据源中取最近多少天的行为数据计算热度。默认取全部数据。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。
  • 基于特征匹配的召回策略 基于特征匹配的召回策略会用用户画像和物品画像的相关属性进行匹配,为用户召回属性匹配程度高的若干个物品。 表7 基于特性匹配的召回策略参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 匹配类型 通过匹配数据的特征,生成推荐候选集。 例如,通过用户匹配物品生成给用户推荐物品的候选集,物品自匹配生成给物品推荐物品的候选集。可选: 用户匹配物品 物品自匹配 匹配特征对 用户和物品相关联特征。请根据实际情况配置参数,如果属性匹配特征对相似度较高内存不够时需提升配置。 用户特征名:字符串,长度1-20。 物品特征名:字符串,长度1-20。 权重值:权重影响不同物品属性匹配的程度,取值0.01-1,2位小数。 匹配个数度量:如果开启匹配个数度量, 同个特征匹配个数多的数据有优势。例如博客标签中,匹配5个标签(tags)比匹配1个标签(tags)更相关。如果不开启, 多值特征匹配时,匹配特征个数无关,都被视为匹配。 操作:可以单击操作列下面的进行删除某个匹配特征对。 您可以单击进入“添加匹配特征对”页面进行配置。设置特征对的用户特征名、物品特征名和权重。 最近邻域数 机器学习中的概念, 例如协同过滤计算中,需要计算物品之间,用户之间的相似度。最近邻域数是x,就是一个物品/用户找出x个和他相似的物品/用户。默认为100。 最大推荐结果数 最多生成多少个推荐结果。默认为100。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。
  • 基于物品相似度的实时召回 基于物品相似度的实时召回策略是根据用户短时间内行为数据(如购买,收藏,内容评论或分享),通过牛顿冷却定律对相关行为的初始权重进行衰减和汇总,从而找出用户该时间段内感兴趣的物品,结合物品的相似度信息进行关联推荐。 表10 基于物品相似度的实时召回参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 依赖作业名称 已经完成的可以提供物品和物品相似度关系的作业,用来进行物品的关联推荐。 topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。
  • 基于用户相似度的实时召回 基于用户相似度的实时召回策略是根据用户间的相似度信息,找到相似用户短时间内行为数据(如购买,收藏,内容评论或分享),通过牛顿冷却定律对相关行为的初始权重进行衰减和汇总,从而找出相似用户该时间段内感兴趣的物品,加权汇总后推荐给该用户。 表11 基于用户相似度的实时召回参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 依赖作业名称 已经完成的可以提供用户和用户相似度关系的作业,用来进行用户的关联推荐。 topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。
  • 业务规则-基于历史行为记忆生成候选集 业务规则-基于历史行为记忆生成候选集可以从用户历史行为数据中筛选出发生过某些行为的物品(例如,筛选出曾经点击过5次的物品)。此策略适用于“看了又看”,“买了又买”等推荐场景。 表5 业务规则-基于历史行为记忆生成候选集参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 频次 “相对时间间隔”:指定历史行为时间段,选取数据中每个用户最靠后的行为数据的时间往前N天的行为数据计算用户偏好。建议至少设置30天。 “绝对时间间隔”:指定历史行为时间段,选取数据中每个用户距离现在时间往前N天的行为数据计算用户偏好。建议至少设置30天。 “行为类型”:指定行为类型。 “最小次数”:行为次数下界,高于此的物品才会被选中。默认为1。 “最大次数”:行为次数上界,低于此的物品才会被选中。 单击,增加频次。你可以单击右侧的删除该频次。 最大推荐结果数 最多生成多少个推荐结果。默认为100。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。
  • 业务规则-人工导入 业务规则-人工导入是指用户自定义物品列表,并将此列表作为候选集,以供在线服务调用。 表6 业务规则-人工导入参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 OBS地址 用户可从此OBS地址中选择自定义物品列表的csv文件。单击,从弹出的对话框中,选择数据存储的OBS桶及其文件夹。 导入候选集类型 选择导入候选集类型,目前支持以下三种。 物品-分数候选集:物品-分数候选集可以用于在线服务的推荐候选集。 用户相似度候选集:用户相似度候选集可用于实时召回。 物品相似度候选集:物品相似度候选集可用于实时召回与在线服务的推荐候选集。 最大推荐结果数 最多生成多少个推荐结果。默认为100。 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。 数据格式(.csv文件): itemId1 itemId2 itemId为物品id,算法将物品列表上传的物品作为候选集 用户可从OBS中选择保存有人工编辑推荐结果的列表(即物品ID)。
  • 基于用户的协同过滤推荐 基于用户的协同过滤推荐采用经典算法基于用户的协同过滤(UserCF)进行召回。基于用户的协同过滤算法是通过用户的历史行为数据发现用户对物品的喜欢(如购买,收藏,内容评论或分享),并对这些喜好进行度量和打分。根据不同用户对相同物品的态度和偏好程度计算用户之间的关系。在有相同喜好的用户间进行物品推荐。 例如,A、B两个用户都购买了abc三本图书,并且给出了5星的好评。则A和B属于同一类用户。可以将A看过的图书d也推荐给用户B。 表3 基于用户的协同过滤推荐参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 最近邻域数 在UserCF算法中使用,生成的相似度矩阵中为每个用户保留的若干个最相似用户。默认为100。 最小交叉度 物品和物品之间被同一用户行为记录的数量,计算相似度时,过滤掉共同记录小于最小交叉度的item。 默认值:1。 物品活跃度 物品过滤用户的活跃度阈值。 取值范围:1-10000。 默认值:1。 效用阈值 用户对物品综合打分的阈值。 取值范围:0.000001-10。 最大推荐结果数 最多生成多少个推荐结果。 默认值:100。 开启时间跨度 不开启取全部数据,开启则指定从数据源中取最近天数的行为数据计算相似度。 时间跨度 用于指定从数据源中取最近多少天的行为数据计算相似度。默认取全部数据。 上传物品相似度 支持客户通过obs导入自定义的相似度信息。相似度文件格式为json, 其中subject为用户或物品, relations为与subject相似的用户或物品及其相似度。例如, { "subject": "item108", "relations": [ { "id": "item115", "score": 0.699357793663589 }, { "id": "item60", "score": 0.659905609639582 }, { "id": "item61", "score": 0.640305447750641 }, { "id": "item18", "score": 0.614275316537666 } ]} 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。
  • 基于物品的协同过滤推荐 基于物品的协同过滤推荐采用经典推荐算法基于物品的协同过滤ItemCF进行召回。 表2 基于物品的协同过滤推荐参数说明 参数名称 说明 名称 策略名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 策略的具体描述。 最近邻域数 在ItemCF算法中使用,生成的相似度矩阵中为每个物品保留的若干个最相似物品。默认100。 用户活跃度 用来过滤用户的活跃度阈值。 取值范围:1-10000。 默认值:1。 效用阈值 用户对物品综合打分的阈值。 取值范围:0.000001-10。 最小交叉度 物品和物品之间被同一用户行为记录的数量,计算相似度时,过滤掉共同记录小于最小交叉度的item。 默认值:1。 最大推荐结果数 最多生成多少个推荐结果。 默认值:100。 开启时间跨度 不开启取全部数据,开启则指定从数据源中取最近天数的行为数据计算相似度。 时间跨度(天) 用于指定从数据源中取最近多少天的行为数据计算相似度。默认取全部数据。 上传物品相似度 支持客户通过obs导入自定义的相似度信息。相似度文件格式为json, 其中subject为用户或物品, relations为与subject相似的用户或物品及其相似度。例如, { "subject": "item108", "relations": [ { "id": "item115", "score": 0.699357793663589 }, { "id": "item60", "score": 0.659905609639582 }, { "id": "item61", "score": 0.640305447750641 }, { "id": "item18", "score": 0.614275316537666 } ]} 开启调度 开启调度,按照指定的调度策略定期执行作业。 “调度周期”:调度周期可选“天”或“周”。 “调度类型”:包括自定义和间隔调度。 “开始调度时间”:选择具体的调度时间。当调度周期选择为“周”时,可在此下拉框中勾选星期一到星期天的任一天进行调度。 “时间间隔”:如果选择的调度类型为间隔调度,需要配置调度的时间间隔。