云服务器内容精选

  • Step Step是组成Workflow的最小单元,体现在DAG中就是一个一个的节点,不同的Step类型承载了不同的服务能力,主要构成如下。 表1 Step 属性 描述 是否必填 数据类型 name 节点的名称,命名规范:只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符 是 str title 节点的标题信息,主要用于在DAG中的展示,如果该字段未填写,则默认使用name进行展示 否 str step_type 节点的类型,决定了节点的功能 是 enum inputs 节点的输入列表 否 AbstractInput或者list[AbstractInput] outputs 节点的输出列表 否 AbstractOutput或者list[AbstractOutput] properties 节点的属性信息 否 dict policy 节点的执行策略,主要包含节点调度运行的时间间隔、节点执行的超时时间、以及节点执行是否跳过的相关配置 否 StepPolicy depend_steps 依赖节点的列表,该字段决定了DAG的结构,也决定了节点执行的顺序 否 Step或者list[Step] 表2 StepPolicy 属性 描述 是否必填 数据类型 poll_interval_seconds 节点调度时间周期,默认为1秒 是 str max_execution_minutes 节点运行超时时间,默认为10080分钟,即7天 是 str skip_conditions 节点是否跳过的条件列表 否 Condition或者Condition列表 Step是节点的超类,主要用于概念上的承载,用户不直接使用。根据功能的不同,构建了不同类型的节点,主要包括CreateDatasetStep、LabelingStep、DatasetImportStep、ReleaseDatasetStep、JobStep、ModelStep、ServiceStep、ConditionStep等,详情请见节点类型。 父主题: 核心概念
  • Data 数据对象用于节点的输入,主要可分为以下三种类型: 真实的数据对象,在工作流构建时直接指定: Dataset:用于定义已有的数据集,常用于数据标注,模型训练等场景 LabelTask: 用于定义已有的标注任务,常用于数据标注,数据集版本发布等场景 OBSPath:用于定义指定的OBS路径,常用于模型训练,数据集导入,模型导入等场景 ServiceData:用于定义一个已有的服务,只用于服务更新的场景 SWRImage:用于定义已有的SWR路径,常用于模型注册场景 GalleryModel:用于定义从gallery订阅的模型,常用于模型注册场景 占位符式的数据对象,在工作流运行时指定: DatasetPlaceholder:用于定义在运行时需要确定的数据集,对应Dataset对象,常用于数据标注,模型训练等场景 LabelTaskPlaceholder:用于定义在运行时需要确定的标注任务,对应LabelTask对象,常用于数据标注,数据集版本发布等场景 OBSPlaceholder:用于定义在运行时需要确定的OBS路径,对应OBSPath对象,常用于模型训练,数据集导入,模型导入等场景 ServiceUpdatePlaceholder:用于定义在运行时需要确定的已有服务,对应ServiceData对象,只用于服务更新的场景 SWRImagePlaceholder:用于定义在运行时需要确定的SWR路径,对应SWRImage对象,常用于模型注册场景 ServiceInputPlaceholder:用于定义在运行时需要确定服务部署所需的模型相关信息,只用于服务部署及服务更新场景 DataSelector:支持多种数据类型的选择,当前仅支持在JobStep节点中使用(仅支持选择OBS或者数据集) 数据选择对象: DataConsumptionSelector:用于在多个依赖节点的输出中选择一个有效输出作为数据输入,常用于存在条件分支的场景中(在构建工作流时未能确定数据输入来源为哪个依赖节点的输出,需根据依赖节点的实际执行情况进行自动选择) 表1 Dataset 属性 描述 是否必填 数据类型 dataset_name 数据集名称 是 str version_name 数据集版本名称 否 str 示例: example = Dataset(dataset_name = "**", version_name = "**") # 通过ModelArts的数据集,获取对应的数据集名称及相应的版本名称。 当Dataset对象作为节点的输入时,需根据业务需要自行决定是否填写version_name字段(比如LabelingStep、ReleaseDatasetStep不需要填写,JobStep必须填写)。 表2 LabelTask 属性 描述 是否必填 数据类型 dataset_name 数据集名称 是 str task_name 标注任务名称 是 str 示例: example = LabelTask(dataset_name = "**", task_name = "**") # 通过ModelArts的新版数据集,获取对应的数据集名称及相应的标注任务名称 表3 OBSPath 属性 描述 是否必填 数据类型 obs_path OBS路径 是 str,Storage 示例: example = OBSPath(obs_path = "**") # 通过 对象存储服务 ,获取已存在的OBS路径值 表4 ServiceData 属性 描述 是否必填 数据类型 service_id 服务的ID 是 str 示例: example = ServiceData(service_id = "**") # 通过ModelArts的在线服务,获取对应服务的服务ID,描述指定的在线服务。用于服务更新的场景。 表5 SWRImage 属性 描述 是否必填 数据类型 swr_path 容器镜像的SWR路径 是 str 示例: example = SWRImage(swr_path = "**") # 容器镜像地址,用于模型注册节点的输入 表6 GalleryModel 属性 描述 是否必填 数据类型 subscription_id 订阅模型的订阅ID 是 str version_num 订阅模型的版本号 是 str 示例: example = GalleryModel(subscription_id="**", version_num="**") # 订阅的模型对象,用于模型注册节点的输入 表7 DatasetPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str data_type 数据类型 否 DataTypeEnum delay 标志数据对象是否在节点运行时配置,默认为False 否 bool default 数据对象的默认值 否 Dataset 示例: example = DatasetPlaceholder(name = "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION) # 数据集对象的占位符形式,可以通过指定data_type限制数据集的数据类型 表8 OBSPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str object_type 表示OBS对象类型,仅支持"file"或者"directory" 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool default 数据对象的默认值 否 OBSPath 示例: example = OBSPlaceholder(name = "**", object_type = "directory" ) # OBS对象的占位符形式,object_type只支持两种类型, "file" 以及 "directory" 表9 LabelTaskPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str task_type 表示标注任务的类型 否 LabelTaskTypeEnum delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = LabelTaskPlaceholder(name = "**") # LabelTask对象的占位符形式 表10 ServiceUpdatePlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = ServiceUpdatePlaceholder(name = "**") # ServiceData对象的占位符形式,用于服务更新节点的输入 表11 SWRImagePlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = SWRImagePlaceholder(name = "**" ) # SWRImage对象的占位符形式,用于模型注册节点的输入 表12 ServiceInputPlaceholder 属性 描述 是否必填 数据类型 name 名称 是 str model_name 模型名称 是 str或者Placeholder model_version 模型版本 否 str envs 环境变量 否 dict delay 服务部署相关信息是否在节点运行时配置,默认为True 否 bool 示例: example = ServiceInputPlaceholder(name = "**" , model_name = "model_name") # 用于服务部署或者服务更新节点的输入 表13 DataSelector 属性 描述 是否必填 数据类型 name 名称 是 str data_type_list 支持的数据类型列表,当前仅支持obs、dataset 是 list delay 标志数据对象是否在节点运行时配置,默认为False 否 bool 示例: example = DataSelector(name = "**" ,data_type_list=["obs", "dataset"]) # 用于作业类型节点的输入 表14 DataConsumptionSelector 属性 描述 是否必填 数据类型 data_list 依赖节点的输出数据对象列表 是 list 示例: example = DataConsumptionSelector(data_list=[step1.outputs["step1_output_name"].as_input(), step2.outputs["step2_output_name"].as_input()]) # 从step1以及step2中选择有效输出作为输入,当step1跳过无输出,step2执行有输出时,将step2的有效输出作为输入(需保证data_list中同时只有一个有效输出) 父主题: 核心概念
  • 开发态 开发态主要是指使用Workflow的Python SDK开发和调试工作流,使用上具有一定的门槛,适用于MLOps相关的开发者。该使用方式对于AI开发者来说是非常熟悉的一种开发模式,而且灵活度极高,主要提供以下能力。 开发构建:使用python代码灵活编排构建工作流。 调试:支持debug以及run两种模式,其中run模式支持节点部分运行、全部运行。 发布:支持将调试后的工作流进行固化,发布至运行态,支持配置运行。 共享:支持将工作流作为资产发布至AI Gallery,分享给其他用户使用。 父主题: 核心概念