云服务器内容精选

  • 补充说明 Flume可靠性保障措施。 Source与Channel、Channel与Sink之间支持事务机制。 Sink Processor支持配置failover、load_balance机制。 例如load_balance示例如下: server.sinkgroups=g1 server.sinkgroups.g1.sinks=k1 k2 server.sinkgroups.g1.processor.type=load_balance server.sinkgroups.g1.processor.backoff=true server.sinkgroups.g1.processor.selector=random Flume多客户端聚合级联时的注意事项。 级联时需要走Avro或者Thrift协议进行级联。 聚合端存在多个节点时,连接配置尽量配置均衡,不要聚合到单节点上。 Flume客户端可以包含多个独立的数据流,即在一个配置文件properties.properties中配置多个Source、Channel、Sink。这些组件可以链接以形成多个流。 例如在一个配置中配置两个数据流,示例如下: server.sources = source1 source2 server.sinks = sink1 sink2 server.channels = channel1 channel2 #dataflow1 server.sources.source1.channels = channel1 server.sinks.sink1.channel = channel1 #dataflow2 server.sources.source2.channels = channel2 server.sinks.sink2.channel = channel2
  • Flume模块介绍 Flume客户端/服务端由一个或多个Agent组成,而每个Agent是由Source、Channel、Sink三个模块组成,数据先进入Source然后传递到Channel,最后由Sink发送到下一个Agent或目的地(客户端外部)。各模块说明见表1。 表1 模块说明 名称 说明 Source Source负责接收数据或产生数据,并将数据批量放到一个或多个Channel。Source有两种类型:数据驱动和轮询。 典型的Source样例如下: 和系统集成并接收数据的Sources:Syslog、Netcat。 自动生成事件数据的Sources:Exec、SEQ。 用于Agent和Agent之间通信的IPC Sources:Avro。 Source必须至少和一个Channel关联。 Channel Channel位于Source和Sink之间,用于缓存Source传递的数据,当Sink成功将数据发送到下一跳的Channel或最终数据处理端,缓存数据将自动从Channel移除。 不同类型的Channel提供的持久化水平也是不一样的: Memory Channel:非持久化 File Channel:基于预写式日志(Write-Ahead Logging,简称WAL)的持久化实现 JDBC Channel:基于嵌入Database的持久化实现 Channel支持事务特性,可保证简易的顺序操作,同时可以配合任意数量的Source和Sink共同工作。 Sink Sink负责将数据传输到下一跳或最终目的,成功完成后将数据从Channel移除。 典型的Sink样例如下: 存储数据到最终目的终端Sink,比如:HDFS、Kafka 自动消耗的Sinks,比如:Null Sink 用于Agent和Agent之间通信的IPC sink:Avro Sink必须关联到一个Channel。 每个Flume的Agent可以配置多个Source、Channel、Sink模块,即一个Source将数据发送给多个Channel,再由多个Sink发送到下一个Agent或目的地。 Flume支持多个Flume配置级联,即上一个Agent的Sink将数据再发送给另一个Agent的Source。
  • Flume模块介绍 Flume客户端/服务端由一个或多个Agent组成,而每个Agent是由Source、Channel、Sink三个模块组成,数据先进入Source然后传递到Channel,最后由Sink发送到下一个Agent或目的地(客户端外部)。各模块说明见表1。 表1 模块说明 名称 说明 Source Source负责接收数据或产生数据,并将数据批量放到一个或多个Channel。Source有两种类型:数据驱动和轮询。 典型的Source样例如下: 和系统集成并接收数据的Sources:Syslog、Netcat。 自动生成事件数据的Sources:Exec、SEQ。 用于Agent和Agent之间通信的IPC Sources:Avro。 Source必须至少和一个Channel关联。 Channel Channel位于Source和Sink之间,用于缓存Source传递的数据,当Sink成功将数据发送到下一跳的Channel或最终数据处理端,缓存数据将自动从Channel移除。 不同类型的Channel提供的持久化水平也是不一样的: Memory Channel:非持久化 File Channel:基于预写式日志(Write-Ahead Logging,简称WAL)的持久化实现 JDBC Channel:基于嵌入Database的持久化实现 Channel支持事务特性,可保证简易的顺序操作,同时可以配合任意数量的Source和Sink共同工作。 Sink Sink负责将数据传输到下一跳或最终目的,成功完成后将数据从Channel移除。 典型的Sink样例如下: 存储数据到最终目的终端Sink,比如:HDFS、Kafka 自动消耗的Sinks,比如:Null Sink 用于Agent和Agent之间通信的IPC sink:Avro Sink必须关联到一个Channel。 每个Flume的Agent可以配置多个Source、Channel、Sink模块,即一个Source将数据发送给多个Channel,再由多个Sink发送到下一个Agent或目的地。 Flume支持多个Flume配置级联,即上一个Agent的Sink将数据再发送给另一个Agent的Source。
  • 补充说明 Flume可靠性保障措施。 Source与Channel、Channel与Sink之间支持事务机制。 Sink Processor支持配置failover、load_balance机制。 例如load_balance示例如下: server.sinkgroups=g1 server.sinkgroups.g1.sinks=k1 k2 server.sinkgroups.g1.processor.type=load_balance server.sinkgroups.g1.processor.backoff=true server.sinkgroups.g1.processor.selector=random Flume多客户端聚合级联时的注意事项。 级联时需要走Avro或者Thrift协议进行级联。 聚合端存在多个节点时,连接配置尽量配置均衡,不要聚合到单节点上。 Flume客户端可以包含多个独立的数据流,即在一个配置文件properties.properties中配置多个Source、Channel、Sink。这些组件可以链接以形成多个流。 例如在一个配置中配置两个数据流,示例如下: server.sources = source1 source2 server.sinks = sink1 sink2 server.channels = channel1 channel2 #dataflow1 server.sources.source1.channels = channel1 server.sinks.sink1.channel = channel1 #dataflow2 server.sources.source2.channels = channel2 server.sinks.sink2.channel = channel2
  • 原因分析 HDFS未启动或故障。 查看Flume运行日志: 2019-02-26 11:16:33,564 | ERROR | [SinkRunner-PollingRunner-DefaultSinkProcessor] | opreation the hdfs file errors. | org.apache.flume.sink.hdfs.HDFSEventSink.process(HDFSEventSink.java:414) 2019-02-26 11:16:33,747 | WARN | [hdfs-CCCC-call-runner-4] | A failover has occurred since the start of call #32795 ClientNamenodeProtocolTranslatorPB.getFileInfo over 192-168-13-88/192.168.13.88:25000 | org.apache.hadoop.io.retry.RetryInvocationHandler$ProxyDescriptor.failover(RetryInvocationHandler.java:220) 2019-02-26 11:16:33,748 | ERROR | [hdfs-CCCC-call-runner-4] | execute hdfs error. {} | org.apache.flume.sink.hdfs.HDFSEventSink$3.call(HDFSEventSink.java:744) java.net.ConnectException: Call From 192-168-12-221/192.168.12.221 to 192-168-13-88:25000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused HDFS Sink未启动。 查看Flume运行日志,发现“ flume current metrics”中并没有Sink信息: 2019-02-26 11:46:05,501 | INFO | [pool-22-thread-1] | flume current metrics:{"CHANNEL.BBBB":{"ChannelCapacity":"10000","ChannelFillPercentage":"0.0","Type":"CHANNEL","ChannelStoreSize":"0","EventProcessTimedelta":"0","EventTakeSuccessCount":"0","ChannelSize":"0","EventTakeAttemptCount":"0","StartTime":"1551152734999","EventPutAttemptCount":"0","EventPutSuccessCount":"0","StopTime":"0"},"SOURCE.AAAA":{"AppendBatchAcceptedCount":"0","EventAcceptedCount":"0","AppendReceivedCount":"0","MonTime":"0","StartTime":"1551152735503","AppendBatchReceivedCount":"0","EventReceivedCount":"0","Type":"SOURCE","TotalFilesCount":"1001","SizeAcceptedCount":"0","UpdateTime":"605410241202740","AppendAcceptedCount":"0","OpenConnectionCount":"0","MovedFilesCount":"1001","StopTime":"0"}} | org.apache.flume.node.Application.getRestartComps(Application.java:467)
  • 处理步骤 使用 --jars 加载flume-ng-sdk-{version}.jar依赖包。 同时修改“spark-default.conf”中两个配置项。 spark.driver.extraClassPath=$PWD/*:{加上原来配置的值} spark.executor.extraClassPath =$PWD/* 作业运行成功。如果还有报错,则需要排查还有哪个jar没有加载,再次执行步骤1和步骤2。