云服务器内容精选

  • Impala应用开发简介 Impala直接对存储在HDFS、HBase或 对象存储服务 (OBS)中的Hadoop数据提供快速、交互式SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据、SQL语法(Hive SQL)、ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括SELECT,JOIN和聚合函数。 HDFS,HBase 和对象存储服务(OBS)存储,包括: HDFS文件格式:基于分隔符的text file,Parquet,Avro,SequenceFile和RCFile。 压缩编解码器:Snappy,GZIP,Deflate,BZIP。 常见的数据访问接口包括: JDBC驱动程序。 ODBC驱动程序。 Hue beeswax和Impala查询UI。 impala-shell命令行接口。 支持Kerberos身份认证。 Impala主要应用于实时查询数据的离线分析(如 日志分析 ,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景。 父主题: Impala应用开发概述
  • Impala应用开发常用概念 客户端 客户端直接面向用户,可通过Java API、Thrift API访问服务端进行Impala的相关操作。本文中的Impala客户端特指Impala client的安装目录,里面包含通过Java API访问Impala的样例代码。 HiveQL语言 Hive Query Language,类SQL语句,与Hive类似。 Statestore Statestore管理Impala集群中所有的Impalad实例的健康状态,并将实例健康信息广播到所有实例上。当某一个Impalad实例发生故障,比如节点异常、网络异常等,Statestore将通知其他Impalad实例,后续的查询请求等将不会向该实例分发。 Catalog Catalog实例服务将每个Impalad实例上发生的元数据变动同步到集群内其他Impalad实例,从而避免在一个Impalad实例中更改元数据,其他各个实例需要执行REFRESH操作来更新。但是,在Hive中建表、修改表等,则需要执行REFRESH或者INVALIDATE METADATA操作。 父主题: Impala应用开发概述
  • Impala应用开发流程 开发流程中各阶段的说明如图1和表1所示。 图1 Impala应用程序开发流程 表1 Impala应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解Impala的基本概念。 Impala应用开发常用概念 准备开发和运行环境 Impala的应用程序支持使用Java、Python两种语言进行开发。推荐使用IntelliJ IDEA工具,请根据指导完成不同语言的开发环境配置。 准备Impala开发和运行环境 根据场景开发工程 提供了Java、Python两种不同语言的样例工程,还提供了从建表、数据加载到数据查询的样例工程。 Impala样例程序开发思路 运行程序及查看结果 指导用户将开发好的程序编译提交运行并查看结果。 调测Impala应用 父主题: Impala应用开发概述
  • Impala应用开发简介 Impala直接对存储在HDFS,HBase 或对象存储服务(OBS)中的Hadoop数据提供快速,交互式SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括 SELECT,JOIN和聚合函数。 HDFS,HBase 和对象存储服务(OBS)存储,包括: HDFS文件格式:基于分隔符的text file,Parquet,Avro,SequenceFile和RCFile。 压缩编解码器:Snappy,GZIP,Deflate,BZIP。 常见的数据访问接口包括: JDBC驱动程序。 ODBC驱动程序。 HUE beeswax和Impala查询UI。 impala-shell命令行接口。 支持Kerberos身份认证。 Impala主要应用于实时查询数据的离线分析(如日志分析,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。 父主题: Impala应用开发概述
  • Impala应用开发常用概念 客户端 客户端直接面向用户,可通过Java API、Thrift API访问服务端进行Impala的相关操作。本文中的Impala客户端特指Impala client的安装目录,里面包含通过Java API访问Impala的样例代码。 HiveQL语言 Hive Query Language,类SQL语句,与Hive类似。 Statestore Statestore管理Impala集群中所有的Impalad实例的健康状态,并将实例健康信息广播到所有实例上。当某一个Impalad实例发生故障,比如节点异常、网络异常等,Statestore将通知其他Impalad实例,后续的查询请求等将不会向该实例分发。 Catalog Catalog实例服务将每个Impalad实例上发生的元数据变动同步到集群内其他Impalad实例,从而避免在一个Impalad实例中更改元数据,其他各个实例需要执行REFRESH操作来更新。但是,在Hive中建表,修改表等,则需要执行REFRESH或者INVALIDATE METADATA操作。 父主题: Impala应用开发概述
  • Impala简介 Impala直接对存储在HDFS,HBase 或对象存储服务(OBS)中的Hadoop数据提供快速,交互式SQL查询。除了使用相同的统一存储平台之外,Impala还使用与Apache Hive相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(Hue中的Impala查询UI)。这为实时或面向批处理的查询提供了一个熟悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括 SELECT,JOIN和聚合函数。 HDFS,HBase 和对象存储服务(OBS)存储,包括: HDFS文件格式:基于分隔符的text file,Parquet,Avro,SequenceFile和RCFile。 压缩编解码器:Snappy,GZIP,Deflate,BZIP。 常见的数据访问接口包括: JDBC驱动程序。 ODBC驱动程序。 HUE beeswax和Impala查询UI。 impala-shell命令行接口。 支持Kerberos身份认证。 Impala主要应用于实时查询数据的离线分析(如日志分析,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。