云服务器内容精选

  • 如何提高训练作业资源利用率 适当增大batch_size:较大的batch_size可以让GPU/NPU计算单元获得更高的利用率,但是也要根据实际情况来选择batch_size,防止batch_YLLsize过大导致内存溢出。 提升数据读取的效率:如果读取一个batch数据的时间要长于GPU/NPU计算一个batch的时间,就有可能出现GPU/NPU利用率上下浮动的情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA Data Loading Library(DALI)等工具提高数据增强的速度。 模型保存不要太频繁:模型保存操作一般会阻塞训练,如果模型较大,并且较频繁地进行保存,就会影响GPU/NPU利用率。同理,其他非GPU/NPU操作尽量不要阻塞训练主进程太多的时间,如日志打印,保存训练指标信息等。
  • 如何判断训练作业资源利用率高低 在模型训练的训练作业列表页可以查看作业资源利用率情况。当作业worker-0实例的GPU/NPU的平均利用率低于50%时,在训练作业列表中会进行告警提示。 图2 作业列表显示作业资源利用率情况 此处的作业资源利用率只涉及GPU和NPU资源。作业worker-0实例的GPU/NPU平均利用率计算方法:将作业worker-0实例的各个GPU/NPU加速卡每个时间点的利用率汇总取平均值。
  • 查找训练作业 当用户使用 IAM 账号登录时,训练作业列表会显示IAM账号下所有训练作业。ModelArts提供查找训练作业功能帮助用户快速查找训练作业。 操作一:单击“只显示自己”按钮,训练作业列表仅显示当前子账号下创建的训练作业。 操作二:按照名称、ID、作业类型、状态、创建时间、算法、资源池等条件筛选的高级搜索。 操作三:单击作业列表右上角“刷新”图标,刷新作业列表。 操作四:自定义列功能设置。 图1 查找训练作业
  • 如何防止Cloud Shell的Session断开 如果需要长时间运行某一个任务,为避免在期间连接断开导致任务失败,可通过使用screen命令使得任务在远程终端窗口运行。 如果镜像中未安装screen,则执行“apt-get install screen”安装。 创建screen终端。 # 使用 -S 创建一个叫name的screen终端 screen -S name 显示已创建的screen终端。 screen -ls There are screens on: 2433.pts-3.linux (2013年10月20日 16时48分59秒) (Detached) 2428.pts-3.linux (2013年10月20日 16时48分05秒) (Detached) 2284.pts-3.linux (2013年10月20日 16时14分55秒) (Detached) 2276.pts-3.linux (2013年10月20日 16时13分18秒) (Detached) 4 Sockets in /var/run/screen/S-root. 连接“screen_id”为“2276”的screen终端。 screen -r 2276 按下“Ctrl”+“a”+“d”键离开screen终端。离开后,screen会话仍将是活跃的,之后可以随时重新连接。 更多Screen使用说明可参考Screen User's Manual。
  • 出错的任务如何卡在运行中状态 创建训练作业时,启动命令末尾新增"|| sleep 5h",并启动训练任务,例如下方的cmd为您的启动命令: cmd || sleep 5h 如果训练失败,则会执行sleep命令,此时可通过Cloud Shell登录容器镜像中调试。 在Cloud Shell中调试多节点训练作业时,需要在Cloud Shell中切换work0、work1来实现对不同节点下发启动命令,否则任务会处于等待其他节点的状态。
  • 如何查看训练作业日志 在训练作业详情页,训练日志窗口提供日志预览、日志下载、日志中搜索关键字、系统日志过滤能力。 预览 系统日志窗口提供训练日志预览功能,如果训练作业有多个节点,则支持查看不同计算节点的日志,通过右侧下拉框可以选择目标节点预览。 图4 查看不同计算节日志 当日志文件过大时,系统日志窗口仅加载最新的部分日志,并在日志窗口上方提供全量日志访问链接。打开该链接可在新页面查看全部日志。 图5 查看全量日志 如果全部日志超过500M,可能会引起浏览页面卡顿,建议您直接下载日志查看。 预览链接在生成后的一小时内,支持任何人打开并查看。您可以分享链接至他人。 请注意日志中不能包含隐私内容,否则会造成信息泄露。 下载 训练日志仅保留30天,超过30天会被清理。如果用户需要永久保存日志,请单击系统日志窗口右上角下载按钮下载日志至本地保存,支持批量下载多节点日志。用户也可以在创建训练作业时打开永久保存日志按钮,保存训练日志至指定OBS路径。 针对使用Ascend规格创建的训练作业,部分系统日志暂不支持直接在训练日志窗口下载,请在创建训练作业时指定OBS路径用于保存训练日志。 图6 下载日志 搜索关键字 用户可以在系统日志右上角的搜索框搜索关键字,如图7所示。 图7 搜索关键字 系统支持高亮关键字并实现搜索结果间的跳转。搜索功能仅支持搜索当前页面加载的日志,如果日志加载不全(请关注页面提示)则需要下载或者通过打开全量日志访问链接进行搜索。全量日志访问链接打开的新页面可以通过Ctrl+F进行搜索。 系统日志过滤 图8 系统日志复选框 如果勾选了系统日志复选框,则日志中呈现系统日志和用户日志。如果去勾选,则只显示用户日志。
  • Ascend场景日志说明 使用Ascend资源运行训练作业时,会产生Ascend相关日志。Ascend训练场景下会生成device日志、plog日志、proc log单卡训练日志、MindSpore日志、普通日志。 其中,Ascend训练场景下的普通日志包括训练进程日志、pip-requirement.txt安装日志、ModelArts平台日志、ma-pre-start日志和davincirun日志。 Ascend日志结构举例说明如下: obs://dgg-test-user/snt9-test-cases/log-out/ # 作业日志路径 ├──modelarts-job-9ccf15f2-6610-42f9-ab99-059ba049a41e ├── ascend ├── process_log ├── rank_0 ├── plog # plog日志 ... ├── device-0 # device日志 ... ├── mindspore # MindSpore日志 ├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log # 普通日志 ├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-proc-rank-0-device-0.txt # proc log单卡训练日志 表2 Ascend场景下日志说明 日志类型 日志说明 日志文件名 device日志 HOST侧用户进程,在DEVICE侧产生的AICPU、HCCP的日志,回传到HOST侧(训练容器)。 如果出现如下情况,则device日志会获取不到。 节点异常重启 被主动停止的节点 在训练进程结束后,该日志会生成到训练容器中。其中,使用MindSpore预置框架训练的device日志会自动上传到OBS,使用其他预置框架和 自定义镜像 训练的device日志如果需要自动上传到OBS,则需要在代码中配置ASCEND_PRO CES S_ LOG _PATH,具体请参考如下示例。 # set npu plog env ma_vj_name=`echo ${MA_VJ_NAME} | sed 's:ma-job:modelarts-job:g'` task_name="worker-${VC_TASK_INDEX}" task_plog_path=${MA_LOG_DIR}/${ma_vj_name}/${task_name} mkdir -p ${task_plog_path} export ASCEND_PROCESS_LOG_PATH=${task_plog_path} “~/ascend/log/device-{device-id}/device-{pid}_{timestamp}.log” 其中,pid是HOST侧用户进程号。 样例: device-166_20220718191853764.log plog日志 HOST侧用户进程,在HOST侧产生的日志(例如:ACL /GE)。 plog日志会生成到训练容器中。其中,使用MindSpore预置框架训练的plog日志会自动上传到OBS,使用自定义镜像训练的plog日志如果需要自动上传到OBS,则需要在代码中配置ASCEND_PROCESS_LOG_PATH,具体请参考如下示例。 # set npu plog env ma_vj_name=`echo ${MA_VJ_NAME} | sed 's:ma-job:modelarts-job:g'` task_name="worker-${VC_TASK_INDEX}" task_plog_path=${MA_LOG_DIR}/${ma_vj_name}/${task_name} mkdir -p ${task_plog_path} export ASCEND_PROCESS_LOG_PATH=${task_plog_path} “~/ascend/log/plog/plog-{pid}_{timestamp}.log” 其中,pid是HOST侧用户进程号。 样例:plog-166_20220718191843620.log proc log proc log是单卡训练日志重定向文件,方便用户快速定位对应计算节点的日志。使用自定义镜像训练的作业不涉及proc log;使用预置框架训练的proc log日志会生成到训练容器中,且自动保存到OBS。 “[modelarts-job-uuid]-proc-rank-[rank id]-device-[device logic id].txt” device id为本次训练作业的NPU卡编号,取值单卡为0,8卡为0~7。 例如:Ascend规格为 8*Snt9时,device id取值为0~7;Ascend规格为 1*Snt9时,device id取值为0。 rank id为本次训练作业的全局NPU卡编号,取值为0~实例数*卡数-1,单个实例下,rank id与device id取值相同。 样例: modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-proc-rank-0-device-0.txt MindSpore日志 使用MindSpore+Ascend训练时会产生单独的MindSpore日志。 MindSpore日志会生成到训练容器中。其中,使用MindSpore预置框架训练的plog日志会自动上传到OBS,使用自定义镜像训练的plog日志如果需要自动上传到OBS,则需要在代码中配置ASCEND_PROCESS_LOG_PATH,具体请参考如下示例。 # set npu plog env ma_vj_name=`echo ${MA_VJ_NAME} | sed 's:ma-job:modelarts-job:g'` task_name="worker-${VC_TASK_INDEX}" task_plog_path=${MA_LOG_DIR}/${ma_vj_name}/${task_name} mkdir -p ${task_plog_path} export ASCEND_PROCESS_LOG_PATH=${task_plog_path} MindSpore的日志介绍请参见MindSpore官网。 普通训练日志 普通训练日志会生成到训练容器的“/home/ma-user/modelarts/log”目录中,且自动上传到OBS。普通训练日志的类型如下所示。 ma-pre-start日志(Ascend场景特有):如果用户有定义ma-pre-start脚本,会产生该脚本执行日志。 davincirun日志(Ascend场景特有):Ascend训练进程通过davincirun.py文件启动,该启动文件产生的日志。 训练进程日志:用户训练代码的标准输出。 pip-requirement.txt安装日志:如果用户有定义pip-requirement.txt文件,会产生pip包安装日志。 ModelArts平台日志:ModelArts平台产生的系统日志,主要用于运维人员定位平台问题。 合并输出在日志文件modelarts-job-[job id]-[task id].log中。 task id表示实例ID,单节点时取值为worker-0,多节点时取值为worker-0、worker-1、...worker-{n-1},n为实例数。 样例: modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log
  • 训练日志定义 训练日志用于记录训练作业运行过程和异常信息,为快速定位作业运行中出现的问题提供详细信息。用户代码中的标准输出、标准错误信息会在训练日志中呈现。在ModelArts中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。 训练日志包括普通训练日志和Ascend相关日志。 普通日志说明:当使用Ascend之外的资源训练时仅产生普通训练日志,普通日志中包含训练进程日志、pip-requirement.txt安装日志和ModelArts平台日志。 Ascend场景日志说明:使用Ascend资源训练时会产生device日志、plog日志、proc log单卡训练日志、MindSpore日志、普通日志。 图1 ModelArts训练日志 只有MindSpore+Ascend训练场景下会产生单独的MindSpore日志。其他AI引擎的日志都包含在普通日志中,无法区分。
  • 训练日志的时效性 从日志产生的时效性上可以分为以下3种情况: 实时日志:训练作业实时运行时产生,在ModelArts训练作业详情页面上可以查看。 历史日志:训练作业结束后,可以在ModelArts训练作业详情页面上查看历史日志,ModelArts系统自动保存30天。 永久日志:转存到OBS桶中的训练日志,在创建训练作业时,打开永久保存日志开关设置作业日志路径即可将日志转存至OBS路径。 图2 开启永久保存日志开关 实时日志和历史日志都是标准日志输出,内容上没有区别。Ascend训练场景下,永久日志中会包含Ascend日志,这部分日志内容在ModelArts界面上看不到。
  • 普通日志说明 普通日志中包含训练进程日志、pip-requirement.txt安装日志和ModelArts Standard平台日志。 表1 普通日志类型 日志类型 说明 训练进程日志 用户训练代码的标准输出。 pip-requirement.txt安装日志 如果用户有定义pip-requirement.txt文件,会产生pip包安装日志。 ModelArts平台日志 ModelArts平台产生的系统日志,主要用于运维人员定位平台问题。 普通日志的文件格式如下,其中task id为训练作业中的节点id。 统一日志格式:modelarts-job-[job id]-[task id].log 样例:log/modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log 单机训练作业只会生成一个日志文件,单机作业的task id默认为worker-0。 分布式场景下有多个节点日志文件并存,通过task id区分不同节点,例如:worker-0,worker-1等。 训练进程日志、“pip-requirement.txt”安装日志和ModelArts平台日志都包含在普通日志文件“modelarts-job-[job id]-[task id].log”中。 ModelArts平台日志可以通过关键字在训练的普通日志文件“modelarts-job-[job id]-[task id].log”中筛查,筛查关键字有:“[ModelArts Service Log]”或“Platform=ModelArts-Service”。 类型一:[ModelArts Service Log] xxx [ModelArts Service Log][init] download code_url: s3://dgg-test-user/snt9-test-cases/mindspore/lenet/ 类型二:time=“xxx” level=“xxx” msg=“xxx” file=“xxx” Command=xxx Component=xxx Platform=xxx time="2021-07-26T19:24:11+08:00" level=info msg="start the periodic upload task, upload period = 5 seconds " file="upload.go:46" Command=obs/upload Component=ma-training-toolkit Platform=ModelArts-Service