云服务器内容精选

  • 引言 训练精度问题是多种因素共同作用的结果,主要表现是训练过程的Loss不收敛、Loss收敛不符合预期或者Loss收敛趋势符合预期,但是模型评测结果表现不佳。 影响模型Loss收敛的原因是多方面的:首先,数据问题可能导致不收敛,例如数据预处理不完善;其次,模型的训练超参数也同样会导致类似的情况;另外,网络随机参数初始化差异以及典型场景(例如Dropout和数据集Shuffle等操作)都可能在训练阶段Loss层面引入误差;再者,模型本身的算法设计过程也可能会引入不收敛情况;最后,则是不符合预期的计算或者通信导致的模型收敛问题。 在迁移流程中,一般已经有模型训练的标杆,因此主要关注昇腾软件栈引入的精度偏差即可。由于昇腾芯片和GPU芯片的架构差异(包括不同架构下的GPU芯片),收到数值计算精度的影响,在软件实现上也存在微小的偏差。一般来说,只要数值差异在特定的容忍范围内,不会影响模型的最终收敛。 父主题: PyTorch迁移精度调优
  • 问题复现 一般场景的训练模型都是包括随机种子、数据集Shuffle、网络结构Dropout等操作的,目的是在网络阶段引入一定的随机性使得训练结果更加具有鲁棒性。然而在精度诊断或者对齐阶段,这些随机性会导致训练运行结果每次表现不一致,无法进行和标杆的比对。因此在训练模型复现问题时,需要固定存在随机性的步骤,保证实验可重复性。存在随机性的步骤包括模型参数初始化,数据Batch加载顺序,Dropout层等。部分算子的计算结果也存在不确定性,需要固定。 当前固定随机性操作可分为工具固定和人工固定两种。 工具固定Seed 对于网络中随机性的固定,Msprobe提供了固定Seed的方式,只需要在config.json文件中添加对应seed配置即可。 Msprobe工具提供了seed_all接口用于固定网络中的随机数。如果客户使用了工具但取用了其他随机种子,则必须使用客户的随机种子固定随机性。 函数原型 from msprobe.pytorch.common import seed_all seed_all(seed=1234, mode=False) 表1 参数说明 参数名 说明 是否必选 seed 随机数种子。参数示例:seed=1000。默认值:1234。 否 mode 确定性计算模式。可配置True或False。参数示例:mode=True。默认值:False。 即使在相同的硬件和输入下,API多次执行的结果也可能不同,开启确定性计算是为了保证在相同的硬件和输入下,API多次执行的结果相同。 确定性计算会导致API执行性能降低,通常不需要在精度问题刚开始定位时就开启,而是建议在发现模型多次执行结果不同的情况下时再开启。 rnn类算子、ReduceSum、ReduceMean等算子可能与确定性计算存在冲突,如果开启确定性计算后多次执行的结果不相同,则考虑存在这些算子。 否 函数示例 seed_all函数的随机数种子,取默认值即可,无须配置;第二个参数默认关闭,不开启确定性计算时也无须配置。 确定性计算是NPU的一套机制,用于保证算子的计算确定性。之所以要有这个机制,是为了在Debug过程中,让所有的算子计算结果前后完全一致可复现,这是大多数精度问题分析的重要前提。因此,在精度问题定位过程中,确定性计算不是目的,而是手段。很多场景下需要在确定性计算使能的情况下,进行下一步的精度问题分析定位。Cuda对部分算子实现了确定性计算,但仍有部分算子无法固定。通常需要依赖确定性计算的场景是长稳问题,因为长稳问题需要通过多次长跑来分析Loss情况,这时候如果NPU本身计算结果不确定,就难以支撑和GPU结果的多次对比。 示例1:仅固定随机数,不开启确定性计算。 seed_all() 示例2:固定随机数,开启确定性计算。 seed_all(mode=True) 在多卡训练场景下由于通信算子计算累加计算顺序不确定,需要添加以下环境变量,固定通信算子计算的确定性: export HCCL_DETERMINISTIC=TRUE 固定随机数范围 seed_all函数可固定随机数的范围如下表所示。 API 固定随机数 os.environ['PYTHONHASHSEED'] = str(seed) 禁止Python中的hash随机化。 random.seed(seed) 设置random随机生成器的种子。 np.random.seed(seed) 设置numpy中随机生成器的种子。 torch.manual_seed(seed) 设置当前CPU的随机种子。 torch.cuda.manual_seed(seed) 设置当前GPU的随机种子。 torch.cuda.manual_seed_all(seed) 设置所有GPU的随机种子。 torch_npu.npu.manual_seed(seed) 设置当前NPU的随机种子。 torch_npu.npu.manual_seed_all(seed) 设置所有NPU的随机种子。 torch.backends.cudnn.enable=False 关闭cuDNN。 torch.backends.cudnn.benchmark=False cuDNN确定性地选择算法。 torch.backends.cudnn.deterministic=True cuDNN仅使用确定性的卷积算法。 工具固定(Dropout) Dropout的实质是以一定概率使得输入网络的数据某些位置元素的数值变为0,这样可以使得模型训练更加有效。但在精度问题的定位过程之中,需要避免产生这种问题,因此需要关闭Dropout。 在导入PrecisionDebugger后,工具会自动将如下接口参数p(丢弃概率)置为0。 torch.nn.functional.dropout torch.nn.functional.dropout2d torch.nn.functional.dropout3d torch.nn.Dropout torch.nn.Dropout2d torch.nn.Dropout3d 人工固定(硬件随机差异) 工具内部对于随机的控制,是通过设定统一的随机种子进行随机性固定的。但是由于硬件的差异,会导致同样的随机种子在不同硬件上生成的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景,用户需要将网络中的randn在CPU上完成后再转到对应device。例如,StableDiffusion中需要在forward过程中逐步生成随机噪声。 这样在Host侧生成的随机张量能够保证一样,搬移到NPU或者GPU设备上仍然一样。 固定随机性完成后,可以使用缩小的模型在单机环境进行问题复现。复现后使用下一章节介绍的msprobe工具进行问题定位。需要注意的是,部分模型算法本身存在固有的随机性,在使用上述方法固定随机性后,如果使用工具也未能找到出问题的API,需要分析是否由算法本身的随机性导致。 父主题: PyTorch迁移精度调优