云服务器内容精选
-
下载数据 SFT全参微调涉及的数据下载地址:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 如果在准备数据章节已下载数据集,此处无需重复操作。 SFT全参微调和LoRA微调训练使用的是同一个数据集,数据处理一次即可,训练时可以共用。
-
数据预处理说明 使用数据预处理脚本preprocess_data.py脚本重新生成.bin和.idx格式的SFT全参微调数据。preprocess_data.py存放在6.3.904-Ascend/llm_train/AscendSpeed/ModelLink/tools目录中,脚本具体内容如下。 #加载ascendspeed及megatron模型: export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/AscendSpeed export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/ModelLink #进入到ModelLink目录下: cd /home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/ModelLink/ #执行以下命令: python ./tools/preprocess_data.py \ --input /home/ma-user/code/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path $TOKENIZER_PATH \ --output-prefix $DATA_PATH \ --workers 8 \ --log-interval 1000 \ --tokenizer-type PretrainedFromHF \ --handler-name GeneralInstructionHandler \ --seq-length 4096 \ --append-eod 参数说明: - input:用于微调的原始数据。 - output-prefix:处理后的数据集保存路径+数据集名称前缀(例如:alpaca-ft)。 - tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase', 'BertWordPieceCase','GPT2BPETokenizer', 'PretrainedFromHF'],设置为PretrainedFromHF。 - tokenizer-name-or-path:tokenizer的存放路径。 - handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 - append-eod:参数用于控制是否在每个输入序列的末尾添加一个特殊的标记。这个标记表示输入序列的结束,可以帮助模型更好地理解和处理长序列 - workers 需要使用的卡数 - seq-length:是一个用于计算序列长度的函数。它接收一个序列作为输入,并返回序列的长度,需和训练时参数保持一致。 输出结果 alpaca_ft_packed_attention_mask_document.bin alpaca_ft_packed_attention_mask_document.idx alpaca_ft_packed_input_ids_document.bin alpaca_ft_packed_input_ids_document.idx alpaca_ft_packed_labels_document.bin alpaca_ft_packed_labels_document.idx
-
数据处理具体操作 SFT全参微调数据处理具体操作步骤如下。 创建处理后的数据存放目录/home/ma-user/ws/processed_for_ma_input/BaiChuan2-13B/data/finetune/。 cd /home/ma-user/ws/ #进入容器工作目录 mkdir -p processed_for_ma_input/BaiChuan2-13B/data/finetune 进入代码目录“/home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/ModelLink/”,在代码目录中执行preprocess_data.py脚本处理数据。 此处提供一段实际的数据处理代码示例如下。 #加载ascendspeed及megatron模型: export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/AscendSpeed export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/ModelLink #进入到ModelLink目录下: cd /home/ma-user/ws/6.3.904-Ascend/llm_train/AscendSpeed/ModelLink/ #执行以下命令: python ./tools/preprocess_data.py \ --input /home/ma-user/ws/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path /home/ma-user/ws/tokenizers/BaiChuan2-13B \ --output-prefix /home/ma-user/ws/processed_for_ma_input/BaiChuan2-13B/data/finetune/alpaca_ft \ --workers 8 \ --log-interval 1000 \ --tokenizer-type PretrainedFromHF \ --handler-name GeneralInstructionHandler \ --seq-length 4096 \ --append-eod 数据处理完后,在 /home/ma-user/ws/processed_for_ma_input/BaiChuan2-13B/data/finetune/目录下生成转换后的数据文件。
-
数据处理具体操作 SFT全参微调数据处理具体操作步骤如下。 创建处理后的数据存放目录/home/ma-user/ws/processed_for_ma_input/Llama2-70B/data/finetune/ cd /home/ma-user/ws/ #进入容器工作目录 mkdir -p processed_for_ma_input/Llama2-70B/data/finetune 进入代码目录“/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink/”,在代码目录中执行preprocess_data.py脚本处理数据。 此处提供一段实际的数据处理代码示例如下。 #进入到ModelLink目录下,xxx-Ascend请根据实际目录替换。 cd /home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink/ #加载ascendspeed及megatron模型 export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/AscendSpeed export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink #执行以下命令 python ./tools/preprocess_data.py \ --input /home/ma-user/ws/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path /home/ma-user/ws/tokenizers/Llama2-70B \ --output-prefix /home/ma-user/ws/processed_for_ma_input/Llama2-70B/data/finetune/alpaca_ft \ --workers 8 \ --log-interval 1000 \ --tokenizer-type PretrainedFromHF \ --handler-name GeneralInstructionHandler \ --append-eod 数据处理完后,在/home/ma-user/ws/processed_for_ma_input/Llama2-70B/data/finetune/目录下生成转换后的数据文件。
-
下载数据 SFT全参微调涉及的数据下载地址:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 如果在准备数据章节已下载数据集,此处无需重复操作。 SFT全参微调和LoRA微调训练使用的是同一个数据集,数据处理一次即可,训练时可以共用。
-
数据预处理说明 使用数据预处理脚本preprocess_data.py脚本重新生成.bin和.idx格式的SFT全参微调数据。preprocess_data.py存放在xxx-Ascend/llm_train/AscendSpeed/ModelLink/tools目录中,脚本具体内容如下。xxx-Ascend请根据实际目录替换。 #加载ascendspeed及megatron模型 export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/AscendSpeed export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink #进入ModelLink目录 cd /home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed/ModelLink python ./tools/preprocess_data.py \ --input /home/ma-user/ws/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet \ --tokenizer-name-or-path $TOKENIZER_PATH \ --output-prefix $DATASET_PATH\ --tokenizer-type PretrainedFromHF \ --workers 8 \ --handler-name GeneralInstructionHandler \ --log-interval 1000 \ --append-eod 参数说明: - input:SFT全参微调数据的存放路径。 - output-prefix:处理后的数据集保存路径+数据集名称前缀(例如:alpaca_ft)。 - tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase', 'BertWordPieceCase','GPT2BPETokenizer', 'PretrainedFromHF'],设置为PretrainedFromHF。 - tokenizer-name-or-path:tokenizer的存放路径。 - handler-name:生成数据集的用途,这里是生成的指令数据集,用于微调。 - workers:数据处理线程数。 -append-eod:用于控制是否在每个输入序列的末尾添加一个特殊的标记。这个标记表示输入序列结束,可以帮助模型更好地理解和处理长序列。 - log-interval:输出处理日志刷新间隔。 输出结果 alpaca_ft_packed_attention_mask_document.bin alpaca_ft_packed_attention_mask_document.idx alpaca_ft_packed_input_ids_document.bin alpaca_ft_packed_input_ids_document.idx alpaca_ft_packed_labels_document.bin alpaca_ft_packed_labels_document.idx
-
HuggingFace权重转换操作 下载Llama2-13b的预训练权重和词表文件,并上传到/home/ma-user/ws/tokenizers/llama2-13b-hf目录下。具体下载地址请参见表1。如果已下载,忽略此步骤。 创建权重转换后的输出目录/home/ma-user/ws/weight/llama2-13b-ckpt/。 cd /home/ma-user/ws/ #进入/home/ma-user/ws/目录 mkdir -p weight/llama2-13b-ckpt 进入代码目录/home/ma-user/ws/AscendCloud-3rdLLM-6.3.902/llm_train/AscendSpeed/,在代码目录中执行convert_weights_from_huggingface.py脚本。 export PYTHONPATH=$PYTHONPATH:/home/ma-user/ws/AscendCloud-3rdLLM-6.3.902/llm_train/AscendSpeed/ModelLink cd /home/ma-user/ws/AscendCloud-3rdLLM-6.3.902/llm_train/AscendSpeed/ModelLink # 权重格式转换 python tools/ckpt_convert/llama/convert_weights_from_huggingface.py \ --input-model-dir /home/ma-user/ws/tokenizers/llama2-13b-hf \ # 输入权重文件夹 --output-model-dir /home/ma-user/ws/weight/llama2-13b-ckpt \ #转换之后的权重输出路径 --tensor-model-parallel-size 8 \ #tp需要与训练脚本中的配置一样 --pipeline-model-parallel-size 1 \ # pp需要与训练脚本中的配置一样 --type 13B \ #模型类型(13B) --merge-mlp 权重转换完成后,在/home/ma-user/ws/weight/llama2-13b-ckpt目录下查看转换后的权重文件。 图1 转换后的权重文件
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格