云服务器内容精选
-
补充说明 Flume可靠性保障措施。 Source与Channel、Channel与Sink之间支持事务机制。 Sink Processor支持配置failover、load_balance机制。 例如load_balance示例如下: server.sinkgroups=g1 server.sinkgroups.g1.sinks=k1 k2 server.sinkgroups.g1.processor.type=load_balance server.sinkgroups.g1.processor.backoff=true server.sinkgroups.g1.processor.selector=random Flume多客户端聚合级联时的注意事项。 级联时需要走Avro或者Thrift协议进行级联。 聚合端存在多个节点时,连接配置尽量配置均衡,不要聚合到单节点上。 Flume客户端可以包含多个独立的数据流,即在一个配置文件properties.properties中配置多个Source、Channel、Sink。这些组件可以链接以形成多个流。 例如在一个配置中配置两个数据流,示例如下: server.sources = source1 source2 server.sinks = sink1 sink2 server.channels = channel1 channel2 #dataflow1 server.sources.source1.channels = channel1 server.sinks.sink1.channel = channel1 #dataflow2 server.sources.source2.channels = channel2 server.sinks.sink2.channel = channel2
-
Flume模块介绍 Flume客户端/服务端由一个或多个Agent组成,而每个Agent是由Source、Channel、Sink三个模块组成,数据先进入Source然后传递到Channel,最后由Sink发送到下一个Agent或目的地(客户端外部)。各模块说明见表1。 表1 模块说明 名称 说明 Source Source负责接收数据或产生数据,并将数据批量放到一个或多个Channel。Source有两种类型:数据驱动和轮询。 典型的Source样例如下: 和系统集成并接收数据的Sources:Syslog、Netcat。 自动生成事件数据的Sources:Exec、SEQ。 用于Agent和Agent之间通信的IPC Sources:Avro。 Source必须至少和一个Channel关联。 Channel Channel位于Source和Sink之间,用于缓存Source传递的数据,当Sink成功将数据发送到下一跳的Channel或最终数据处理端,缓存数据将自动从Channel移除。 不同类型的Channel提供的持久化水平也是不一样的: Memory Channel:非持久化 File Channel:基于预写式日志(Write-Ahead Logging,简称WAL)的持久化实现 JDBC Channel:基于嵌入Database的持久化实现 Channel支持事务特性,可保证简易的顺序操作,同时可以配合任意数量的Source和Sink共同工作。 Sink Sink负责将数据传输到下一跳或最终目的,成功完成后将数据从Channel移除。 典型的Sink样例如下: 存储数据到最终目的终端Sink,比如:HDFS、Kafka 自动消耗的Sinks,比如:Null Sink 用于Agent和Agent之间通信的IPC sink:Avro Sink必须关联到一个Channel。 每个Flume的Agent可以配置多个Source、Channel、Sink模块,即一个Source将数据发送给多个Channel,再由多个Sink发送到下一个Agent或目的地。 Flume支持多个Flume配置级联,即上一个Agent的Sink将数据再发送给另一个Agent的Source。
-
Flume模块介绍 Flume客户端/服务端由一个或多个Agent组成,而每个Agent是由Source、Channel、Sink三个模块组成,数据先进入Source然后传递到Channel,最后由Sink发送到下一个Agent或目的地(客户端外部)。各模块说明见表1。 表1 模块说明 名称 说明 Source Source负责接收数据或产生数据,并将数据批量放到一个或多个Channel。Source有两种类型:数据驱动和轮询。 典型的Source样例如下: 和系统集成并接收数据的Sources:Syslog、Netcat。 自动生成事件数据的Sources:Exec、SEQ。 用于Agent和Agent之间通信的IPC Sources:Avro。 Source必须至少和一个Channel关联。 Channel Channel位于Source和Sink之间,用于缓存Source传递的数据,当Sink成功将数据发送到下一跳的Channel或最终数据处理端,缓存数据将自动从Channel移除。 不同类型的Channel提供的持久化水平也是不一样的: Memory Channel:非持久化 File Channel:基于预写式日志(Write-Ahead Logging,简称WAL)的持久化实现 JDBC Channel:基于嵌入Database的持久化实现 Channel支持事务特性,可保证简易的顺序操作,同时可以配合任意数量的Source和Sink共同工作。 Sink Sink负责将数据传输到下一跳或最终目的,成功完成后将数据从Channel移除。 典型的Sink样例如下: 存储数据到最终目的终端Sink,比如:HDFS、Kafka 自动消耗的Sinks,比如:Null Sink 用于Agent和Agent之间通信的IPC sink:Avro Sink必须关联到一个Channel。 每个Flume的Agent可以配置多个Source、Channel、Sink模块,即一个Source将数据发送给多个Channel,再由多个Sink发送到下一个Agent或目的地。 Flume支持多个Flume配置级联,即上一个Agent的Sink将数据再发送给另一个Agent的Source。
-
补充说明 Flume可靠性保障措施。 Source与Channel、Channel与Sink之间支持事务机制。 Sink Processor支持配置failover、load_balance机制。 例如load_balance示例如下: server.sinkgroups=g1 server.sinkgroups.g1.sinks=k1 k2 server.sinkgroups.g1.processor.type=load_balance server.sinkgroups.g1.processor.backoff=true server.sinkgroups.g1.processor.selector=random Flume多客户端聚合级联时的注意事项。 级联时需要走Avro或者Thrift协议进行级联。 聚合端存在多个节点时,连接配置尽量配置均衡,不要聚合到单节点上。 Flume客户端可以包含多个独立的数据流,即在一个配置文件properties.properties中配置多个Source、Channel、Sink。这些组件可以链接以形成多个流。 例如在一个配置中配置两个数据流,示例如下: server.sources = source1 source2 server.sinks = sink1 sink2 server.channels = channel1 channel2 #dataflow1 server.sources.source1.channels = channel1 server.sinks.sink1.channel = channel1 #dataflow2 server.sources.source2.channels = channel2 server.sinks.sink2.channel = channel2
-
原因分析 HDFS未启动或故障。 查看Flume运行日志: 2019-02-26 11:16:33,564 | ERROR | [SinkRunner-PollingRunner-DefaultSinkProcessor] | opreation the hdfs file errors. | org.apache.flume.sink.hdfs.HDFSEventSink.process(HDFSEventSink.java:414) 2019-02-26 11:16:33,747 | WARN | [hdfs-CCCC-call-runner-4] | A failover has occurred since the start of call #32795 ClientNamenodeProtocolTranslatorPB.getFileInfo over 192-168-13-88/192.168.13.88:25000 | org.apache.hadoop.io.retry.RetryInvocationHandler$ProxyDescriptor.failover(RetryInvocationHandler.java:220) 2019-02-26 11:16:33,748 | ERROR | [hdfs-CCCC-call-runner-4] | execute hdfs error. {} | org.apache.flume.sink.hdfs.HDFSEventSink$3.call(HDFSEventSink.java:744) java.net.ConnectException: Call From 192-168-12-221/192.168.12.221 to 192-168-13-88:25000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused HDFS Sink未启动。 查看Flume运行日志,发现“ flume current metrics”中并没有Sink信息: 2019-02-26 11:46:05,501 | INFO | [pool-22-thread-1] | flume current metrics:{"CHANNEL.BBBB":{"ChannelCapacity":"10000","ChannelFillPercentage":"0.0","Type":"CHANNEL","ChannelStoreSize":"0","EventProcessTimedelta":"0","EventTakeSuccessCount":"0","ChannelSize":"0","EventTakeAttemptCount":"0","StartTime":"1551152734999","EventPutAttemptCount":"0","EventPutSuccessCount":"0","StopTime":"0"},"SOURCE.AAAA":{"AppendBatchAcceptedCount":"0","EventAcceptedCount":"0","AppendReceivedCount":"0","MonTime":"0","StartTime":"1551152735503","AppendBatchReceivedCount":"0","EventReceivedCount":"0","Type":"SOURCE","TotalFilesCount":"1001","SizeAcceptedCount":"0","UpdateTime":"605410241202740","AppendAcceptedCount":"0","OpenConnectionCount":"0","MovedFilesCount":"1001","StopTime":"0"}} | org.apache.flume.node.Application.getRestartComps(Application.java:467)
-
处理步骤 使用 --jars 加载flume-ng-sdk-{version}.jar依赖包。 同时修改“spark-default.conf”中两个配置项。 spark.driver.extraClassPath=$PWD/*:{加上原来配置的值} spark.executor.extraClassPath =$PWD/* 作业运行成功。如果还有报错,则需要排查还有哪个jar没有加载,再次执行步骤1和步骤2。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格