云服务器内容精选
-
处理方法 如果是限流问题,日志中还会有如下错误,OBS相关的错误码解释请参见OBS官方文档,这种情况建议提工单。 图2 错误日志 如果是client数太多,尤其对于5G以上文件,OBS接口不支持直接调用,需要分多个线程分段拷贝,目前OBS侧服务端超时时间是30S,可以通过如下设置减少进程数。 # 设置进程数 os.environ['MOX_FILE_LARGE_FILE_TASK_NUM']=1 import moxing as mox # 拷贝文件 mox.file.copy_parallel(src_url=your_src_dir, dst_url=your_target_dir, threads=0, is_processing=False) 创建训练作业时,可通过环境变量“MOX_FILE_PARTIAL_MAXIMUM_SIZE”设置用户需要分段下载的大文件阈值(单位为Bytes),超过该阈值的文件将使用并发下载模式进行分段下载。
-
处理方法 查看虚拟机所使用的存储空间,再查看回收站文件占用内存,根据实际删除回收站里不需要的大文件。 在Notebook实例详情页,查看实例的存储容量。 执行如下命令,排查虚拟机所使用的存储空间,一般接近存储容量,请排查回收站占用内存。 cd /home/ma-user/work du -h --max-depth 0 执行如下命令,排查回收站占用内存(回收站文件默认在/home/ma-user/work/.Trash-1000/files下)。 cd /home/ma-user/work/.Trash-1000/ du -ah 根据实际删除回收站不需要的大文件。(注:请谨慎操作,文件删除后不可恢复) rm {文件路径} 如果删除的文件夹或者文件中带有空格,需要给文件夹或文件加上单引号。如图示例: 执行如下命令,再次检查虚拟机所使用的存储空间。 cd /home/ma-user/work du -h --max-depth 0 如果Notebook实例的存储配置采用的是云硬盘EVS,可在Notebook详情页申请扩容磁盘。
-
原因分析 出现该问题的可能原因如下: 程序运行过程中,产生了core文件,core文件占满了"/"根目录空间。 本地数据、文件保存将“/cache”目录3.5T空间用完了。 云上训练磁盘空间一般指如下两个目录的磁盘空间: “/”根目录,是docker中配置项“base size”,默认是10G,云上统一改为50G。 “/cache”目录满了,一般是3.5T存储空间满了,具体规格的空间大小可参见训练环境中不同规格资源“/cache”目录的大小。
-
解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from matplotlib import pyplot as plt import cv2 img = cv2.imread('图片路径') plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.title('my picture') plt.show()
-
处理方法 按照issues中的说明,应该是环境中的库冲突了,因此在启动脚本最开始之前,添加如下代码。 import os os.system("rm /home/work/anaconda3/lib/libmkldnn.so") os.system("rm /home/work/anaconda3/lib/libmkldnn.so.0") 必现的问题,使用本地Pycharm远程连接Notebook调试。
-
处理方法 如果是OBS相关错误。 OBS文件不存在。The specified key does not exist。 参考日志提示“errorMessage:The specified key does not exist”章节处理。 用户OBS权限不足。 参考 5.5.1 日志提示“reason:Forbidden”。 OBS限流。 参考5.1.1 OBS拷贝过程中提示“BrokenPipeError: Broken pipe”。 OBS其他问题。 请参考OBS服务端错误码或者采集request id后向OBS客服进行咨询。 如果是空间不足。 参考 常见的磁盘空间不足的问题和解决办法章节处理。
-
处理方法1 在ModelArts管理控制台,选择“全局配置”。 在用户名对应的“授权内容”列,单击“查看权限”,确认用户的委托权限是否已包含Tenant Administrator。 图1 查看委托权限详情 是,重新“启动”边缘服务,若还是“异常”则联系技术支持处理。 否,执行下一步,给用户添加委托权限。 添加委托权限。 如果是 IAM 子账号,没有修改委托权限,请联系管理员添加Tenant Adiministrator委托权限。 登录 统一身份认证 服务IAM管理控制台。 单击导航栏的“委托”,进入委托页面。 搜索ModelArts使用的委托,例如“modelarts_agency”,单击委托名称进入“基本信息”页面。 单击“授权”,添加Tenant Adiministrator权限,按操作指引完成授权。 授权完成后,重新“启动”边缘服务,观察状态是否正常。
-
Notebook 自定义镜像 故障基础排查 当制作的自定义镜像使用出现故障时,请用户按照如下方法排查: 用户自定义镜像没有ma-user用户及ma-group用户组; 用户自定义镜像中/home/ma-user目录,属主和用户组不是ma-user和ma-group; 用户自定义镜像必须满足用户目录/home/ma-user权限为750,不能为其他权限; 用户自定义镜像使用远程SSH功能,OpenSSH版本要兼容或高于8.0; 用户制作的自定义镜像,在本地执行docker run启动,无法正常运行; 用户自行安装了Jupyterlab服务导致冲突的,需要用户本地使用Jupyterlab命令罗列出相关的静态文件路径,删除并且卸载镜像中的Jupyterlab服务; 用户自己业务占用了开发环境官方的8888、8889端口的,需要用户修改自己的进程端口号; 用户的镜像指定了PYTHONPATH、sys.path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权限、依赖缺失或构建命令错误)等原因导致的。 用户的Anaconda环境中是否出现了以下问题: 在“{python_env}/lib”目录下存在以python开头的非法目录(例如“pythonNone”),正常目录名应该是python+版本号(例如“python3.7”),这可能是由于环境配置错误或意外操作导致的。 用户可能手动在Anaconda环境目录“{conda}/envs”下创建了空目录或在环境的“lib”目录下创建了非法目录,这种操作会破坏Anaconda的目录结构。 用户可能手动清空了某个环境目录内的文件,而这些文件是Anaconda环境所必需的,导致环境无法正常工作。 用户修改“/home/ma-user/.ssh”目录权限导致ssh无法使用的。.ssh目录权限参考如下: chmod 750 .ssh chmod 644 .ssh/authorized_keys chmod 644 .ssh/config chmod 640 .ssh/environment chmod 750 .ssh/etc chmod 640 .ssh/known_hosts chmod 750 .ssh/var chmod 600 .ssh/etc/ssh_host_rsa_key chmod 640 .ssh/etc/ssh_host_rsa_key.pub chmod 750 .ssh/etc/sshd_config chmod 750 .ssh/var/run/sshd.pid 父主题: Notebook中使用自定义镜像
-
使用自定义依赖包的模型配置文件示例 如下示例中,定义了1.16.4版本的numpy的依赖环境。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 { "model_algorithm": "image_classification", "model_type": "TensorFlow", "runtime": "python3.6", "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [ { "type": "string" } ] } } } } } ], "metrics": { "f1": 0.124555, "recall": 0.171875, "precision": 0.00234938928519385, "accuracy": 0.00746268656716417 }, "dependencies": [ { "installer": "pip", "packages": [ { "restraint": "EXACT", "package_version": "1.16.4", "package_name": "numpy" } ] } ] }
-
自定义镜像类型的模型配置文件示例 模型输入和输出与目标检测模型配置文件示例类似。 模型预测输入为图片类型时,request请求示例如下: 该实例表示模型预测接收一个参数名为images、参数类型为file的预测请求,在推理界面会显示文件上传按钮,以文件形式进行预测。 1 2 3 4 5 6 7 8 9 10 11 { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } } 模型预测输入为json数据类型时,request请求示例如下: 该实例表示模型预测接收json请求体,只有一个参数名为input、参数类型为string的预测请求,在推理界面会显示文本输入框,用于填写预测请求。 1 2 3 4 5 6 7 8 9 10 11 { "Content-type": "application/json", "data": { "type": "object", "properties": { "input": { "type": "string" } } } } 完整请求示例如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 { "model_algorithm": "image_classification", "model_type": "Image", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "required": [ "predicted_label", "scores" ], "properties": { "predicted_label": { "type": "string" }, "scores": { "type": "array", "items": [{ "type": "array", "minItems": 2, "maxItems": 2, "items": [{ "type": "string" }, { "type": "number" } ] }] } } } } }] }
-
机器学习类型的模型配置文件示例 以下代码以XGBoost为例。 模型输入: { "req_data": [ { "sepal_length": 5, "sepal_width": 3.3, "petal_length": 1.4, "petal_width": 0.2 }, { "sepal_length": 5, "sepal_width": 2, "petal_length": 3.5, "petal_width": 1 }, { "sepal_length": 6, "sepal_width": 2.2, "petal_length": 5, "petal_width": 1.5 } ] } 模型输出: { "resp_data": [ { "predict_result": "Iris-setosa" }, { "predict_result": "Iris-versicolor" } ] } 配置文件: { "model_type": "XGBoost", "model_algorithm": "xgboost_iris_test", "runtime": "python2.7", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "application/json", "data": { "type": "object", "properties": { "req_data": { "items": [ { "type": "object", "properties": {} } ], "type": "array" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "resp_data": { "type": "array", "items": [ { "type": "object", "properties": { "predict_result": {} } } ] } } } } } ] }
-
预测分析模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 { "data": { "req_data": [ { "buying_price": "high", "maint_price": "high", "doors": "2", "persons": "2", "lug_boot": "small", "safety": "low", "acceptability": "acc" }, { "buying_price": "high", "maint_price": "high", "doors": "2", "persons": "2", "lug_boot": "small", "safety": "low", "acceptability": "acc" } ] } } 模型输出 1 2 3 4 5 6 7 8 9 10 11 12 { "data": { "resp_data": [ { "predict_result": "unacc" }, { "predict_result": "unacc" } ] } } 配置文件 代码中request结构和response结构中的data参数是json schema数据结构。data/properties里面的内容对应“模型输入”和“模型输出”。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 { "model_type": "TensorFlow", "model_algorithm": "predict_analysis", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "application/json", "data": { "type": "object", "properties": { "data": { "type": "object", "properties": { "req_data": { "items": [ { "type": "object", "properties": {} } ], "type": "array" } } } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "data": { "type": "object", "properties": { "resp_data": { "type": "array", "items": [ { "type": "object", "properties": {} } ] } } } } } } } ], "dependencies": [ { "installer": "pip", "packages": [ { "restraint": "EXACT", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "EXACT", "package_version": "5.2.0", "package_name": "Pillow" } ] } ] }
-
图像分类模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 2 3 4 5 6 7 { "predicted_label": "flower", "scores": [ ["rose", 0.99], ["begonia", 0.01] ] } 配置文件 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 { "model_type": "TensorFlow", "model_algorithm": "image_classification", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "predicted_label": { "type": "string" }, "scores": { "type": "array", "items": [{ "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "type": "string" }, { "type": "number" } ] }] } } } } }], "dependencies": [{ "installer": "pip", "packages": [{ "restraint": "ATLEAST", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "", "package_version": "", "package_name": "Pillow" } ] }] } 如下代码以MindSpore引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 "[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157 11.290332 -1.5861531 5.7887416 ]]" 配置文件 { "model_algorithm": "image_classification", "model_type": "MindSpore", "runtime": "mindspore_2.1.0-cann_6.3.2-py_3.7-euler_2.10.7-aarch64-snt9b", "metrics": { "f1": 0.124555, "recall": 0.171875, "precision": 0.0023493892851938493, "accuracy": 0.00746268656716417 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [{ "type": "string" }] } } } } } ], "dependencies": [] }
-
apis参数代码示例 [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [ { "type": "string" } ] } } } } }]
-
目标检测模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 { "detection_classes": [ "face", "arm" ], "detection_boxes": [ [ 33.6, 42.6, 104.5, 203.4 ], [ 103.1, 92.8, 765.6, 945.7 ] ], "detection_scores": [0.99, 0.73] } 配置文件 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 { "model_type": "TensorFlow", "model_algorithm": "object_detection", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "detection_classes": { "type": "array", "items": [{ "type": "string" }] }, "detection_boxes": { "type": "array", "items": [{ "type": "array", "minItems": 4, "maxItems": 4, "items": [{ "type": "number" }] }] }, "detection_scores": { "type": "array", "items": [{ "type": "number" }] } } } } }], "dependencies": [{ "installer": "pip", "packages": [{ "restraint": "EXACT", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "EXACT", "package_version": "5.2.0", "package_name": "Pillow" } ] }] }
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格