云服务器内容精选
-
响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "jobId": "6-57222f3d-f6b8-41ba-b492-60ed9b879223" } 状态码: 400 失败响应示例 HttpStatusCode: 400 { "errorCode": "GES.8011", "errorMessage": "graph : movie2 is not exist" }
-
请求示例 请求示例1:取消已经提交的某个作业。 POST http://{SERVER_URL}/ges/v1.0/{project_id}/hyg/{graph_name}/dsl { "scriptPath": "bucket/run_sssp.py", "obsParameters": { "accessKey": "XXX", "secretKey": "XXX" } } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。
-
请求参数 表2 Body参数说明 参数 是否必选 类型 说明 scriptPath 是 String 用户编写好的DSL算法文件路径。 obsParameters 是 Object OBS认证参数。具体请见obsParameters参数说明。 timeout 否 Integer 超时时间,单位为秒。 表3 obsParameters参数说明 参数 是否必选 类型 说明 accessKey 是 string ak值。 secretKey 是 string sk值。
-
请求示例 POST http://{SERVER_URL}/ges/v1.0/{project_id}/hyg/{graph_name}/algorithm { "algorithmName":"pagerank", "parameters":{ "alpha":0.85, "convergence":0.00001, "max_iterations":1000, "directed":true }, "output": { "format": "TXT", "mode": "FULL" } }
-
响应参数 表2 响应Body参数说明 参数 类型 说明 errorMessage String 系统提示信息。 执行成功时,字段可能为空。 执行失败时,用于显示错误信息。 errorCode String 系统提示信息。 执行成功时,字段可能为空。 执行失败时,用于显示错误码。 jobId String 执行算法任务ID。请求失败时,该字段为空。 说明: 可以查询jobId查看任务执行状态、获取返回结果,详情参考Job管理API。
-
算法结果TXT格式说明 表1 算法结果的txt格式 算法 支持程度 header content e.g. all_pairs_shortest_paths 本地,OBS # runtime: {runtime} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # batch_paths: 每行为1对pair的多条路,格式: {sourceID},{targetID},"[[{sourceID},{v1},...,{targetID}],...]" # runtime: 4.411 # paths_number: 20 # data_total_size: 25 # data_return_size: 25 # data_offset: 0 # batch_paths: "121","66","[["121","25","66"]]" all_shortest_paths 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths: 每行为一条路,格式: {sourceID},{vertexID1},...,{targetID} # runtime: 0.207 # source: 121 # target: 66 # paths_number: 2 # data_total_size: 2 # data_return_size: 2 # data_offset: 0 # paths: 121,7,66 121,25,66 all_shortest_paths_of_vertex_sets 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths: 每行为一条路,格式: {sourceID},{vertexID1},...,{targetID} # runtime: 2.772 # sources: 48,129,34,36 # targets: 46,66,101 # paths_number: 15 # data_total_size: 15 # data_return_size: 15 # data_offset: 0 # paths: 36,72,101 36,59,46 36,73,46 betweenness 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # betweenness: {vertexID},{betweenness} # runtime: 1.593 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # betweenness: 79,20.697222222222223 80,12.290584415584414 81,1.5 bigclam 本地,OBS # runtime: {runtime} # community_num: {community_num} # log_likelihood: {log_likelihood} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # communities: {vertexID}, {community} # runtime: 2.754 # community_num: 1 # log_likelihood: -5593.4549824494925 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # communities: 6,0 13,0 cesna 本地,OBS # runtime: {runtime} # community_num: {community_num} # log_likelihood: {log_likelihood} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # communities: {vertexID}, {community} # runtime: 40114.213 # community_num # log_likelihood # data_total_size: 1344 # data_return_size: 1344 # data_offset: 0 # communities: 3850,3 3858,3 3866,3 closeness 本地,OBS # runtime: {runtime} # source: {source} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # closeness: {closeness} # runtime: 0.394 # source: 12 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # closeness: 0.5087719298245614 cluster_coefficient (statistic = true) 本地,OBS # runtime: {runtime} # cluster_coefficient: {cluster_coefficient} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertex_cluster_coefficient: {vertexID},{cluster_coefficient} # runtime: 0.661 # cluster_coefficient: 0.13517429595852912 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertex_cluster_coefficient: common_neighbors_of_vertex_sets 本地,OBS # runtime: {runtime} # common_neighbors: {common_neighbors} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertices: {vertexID} # runtime: 0.42 # common_neighbors: 26 # data_total_size: 26 # data_return_size: 26 # data_offset: 0 # vertices: 103 138 98 connected_component 本地,OBS # runtime: {runtime} # community_num: {community_num} # Max_WCC_size: {Max_WCC_size} # Max_WCC_id: {Max_WCC_id} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community: {vertexID},{community} # runtime: 0.263 # community_num: 1 # Max_WCC_size # Max_WCC_id # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,0 6,0 13,0 edge_betweenness 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # edge_betweenness: {sourceID},{targetID},{edge_betweenness} # runtime: 153.006 # data_total_size: 311 # data_return_size: 311 # data_offset: 0 # edge_betweenness: 51,20,1.3333333333333333 51,33,7.192099567099566 51,10,3.4761904761904763 infomap 本地,OBS # runtime: {runtime} # min_code_length: {min_code_length} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community: {vertexID},{community} # runtime: 98.158 # min_code_length: 6.2680095519443135 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,20000000055 6,20000000050 13,20000000014 k_hop 本地,OBS # runtime: {runtime} # source: {source} # k: {k} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertices: {vertexID} # runtime: 0.442 # source: 76 # k: 6 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertices: 2 6 13 kcore 本地,OBS # runtime: {runtime} # kmax: {kmax} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # coreness: {vertexID},{coreness} # runtime: 10.882 # kmax: 15 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # coreness: 2,14 6,15 13,15 label_propagation 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community: {vertexID},{community} # runtime: 2.624 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,10000000024 6,10000000024 13,10000000024 link_prediction 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # link_prediction: {link_prediction} # runtime: 0 # source: 123 # target: 43 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # link_prediction: 0.07017543859649122 louvain 本地,OBS # runtime: {runtime} # modularity: {modularity} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # community: {vertexID},{community} # runtime: 45.835 # modularity: 0.16375671670152867 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # community: 2,20000000062 6,20000000050 13,20000000050 n_paths 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # paths_number: {paths_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # paths: 每行为一条路,格式: {sourceID},{vertexID1},...,{targetID} # runtime: 8.025 # source: 123 # target: 87 # paths_number: 100 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # paths: 123,21,87 123,13,87 123,32,87 od_betweenness 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # edge_betweenness: {sourceID},{targetID},{edge_betweenness} # runtime: 1.391 # data_total_size: 311 # data_return_size: 311 # data_offset: 0 # edge_betweenness: 51,20,0 51,33,0 51,10,0 pagerank 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # pagerank: {vertexID},{pagerank} # runtime: 4.044 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # pagerank: 2,0.007888904051903298 6,0.013215863692849642 13,0.01860530199450448 personalrank 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # personalrank: {vertexID},{personalrank} # runtime: 2.326 # source: 46 # data_total_size: 49 # data_return_size: 49 # data_offset: 0 # personalrank: 0,0.0021350905350732297 1,0.004591151406893241 shortest_path 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # path: 每行为一条路,格式: {sourceID},{vertexID1},...,{targetID} # runtime: 0.308 # source: 123 # target: 5 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # path: 123,10,137,5 shortest_path_of_vertex_sets 本地,OBS # runtime: {runtime} # source: {source} # target: {target} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # path: 每行为一条路,格式: {sourceID},{vertexID1},...,{targetID} # runtime: 1.832 # source: 24 # target: 121 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # path: 24,121 single_vertex_circles_detection 本地,OBS # runtime: {runtime} # source: {source} # min_circle_length: {min_circle_length} # max_circle_length: {max_circle_length} # limit_circle_number: {limit_circle_number} # circle_number: {circle_number} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # circles: 每行为一条路,格式: {sourceID},{vertexID1},...,{sourceID} # runtime: 37.46 # source: 122 # target: # min_circle_length: 3 # max_circle_length: 10 # limit_circle_number: 100 # circle_number: 100 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # circles: 122,82,79,76,65,122 122,125,135,77,65,122 122,82,114,96,65,122 sssp 本地,OBS # runtime: {runtime} # source: {source} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # distance: {vertexID},{distance} # runtime: 0.452 # source: 32 # data_total_size: 48 # data_return_size: 48 # data_offset: 0 # distance: 0,2 5,2 7,2 subgraph_matching 本地,OBS # runtime: {runtime} # pattern_graph: {pattern_graph} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # subgraphs: 每行为一个匹配的子图,格式: {vertexID1},{vertexID2},...,{vertexIDn} ------ statistics = true------- # runtime: 1.376 # pattern_graph: 2,3,1 # data_total_size: 1 # data_return_size: 1 # data_offset: 0 # subgraph_number: 1556 ------ statistics = false------- # runtime: 0.956 # pattern_graph: 2,3,1 # subgraph_number: 0 # data_total_size: 100 # data_return_size: 100 # data_offset: 0 # subgraphs: 0,51,126 0,51,131 0,126,113 topic_rank 本地,OBS # runtime: {runtime} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # topicrank: {vertexID},{topicrank} # runtime: 1.11 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # topicrank: 2,0.00663068274092574 6,0.007278130208954746 13,0.007869137668788257 triangle_count (statistic = true) 本地,OBS # runtime: {runtime} # triangle_count: {triangle_count} # data_total_size: {data_total_size} # data_return_size: {data_return_size} # data_offset: {data_offset} # vertex_triangles: {vertexID},{vertex_triangles} # runtime: 0.491 # triangle_count: 1653 # data_total_size: 32 # data_return_size: 32 # data_offset: 0 # vertex_triangles: 算法结果失败返回示例: Http Status Code: 400 { "errorMessage": "Unsupported output file format", "errorCode": "GES.8301" } 父主题: HyG算法API
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格