云服务器内容精选
-
SMP相关参数配置建议 如果要打开SMP自适应功能,要设置query_dop=0,需同步调整以下相关参数值,以获取更佳的dop选择: comm_usable_memory 当系统内存较大时,max_process_memory设置较大,可适当调大该值,建议设置为max_process_memory的5%,默认值为4GB。 comm_max_stream 设置建议值为:comm_max_stream=Min(dop_limit * dop_limit * 20 * 2, max_process_memory(字节数) * 0.025 / 总DN数 / 260),且该值在comm_max_stream取值范围内。 max_connections 设置建议值为:max_connections=dop_limit * 20 * 6 + 24,且该值在max_connections取值范围内。 公式中的dop_limit为集群中每个DN对应的CPU数,计算公式为:dop_limit = 单机器的CPU逻辑核数 / 单机器的DN数。
-
资源对SMP性能的影响 SMP架构是一种利用富余资源来换取时间的方案,计划并行之后必定会引起资源消耗的增加,包括CPU、内存、I/O和网络带宽等资源的消耗都会出现明显的增长,而且随着并行度的增大,资源消耗也随之增大。当上述资源成为瓶颈的情况下,SMP无法提升性能,反而可能导致集群整体性能的劣化。SMP支持自适应特性,该特性会根据当前资源和查询特征,动态选取最优的并行度。下面对各种资源对SMP性能的影响情况分别进行说明: CPU资源 在一般客户场景中,系统CPU利用率不高的情况下,利用SMP并行架构能够更充分地利用系统CPU资源,提升系统性能。但当数据库服务器的CPU核数较少,CPU利用率已经比较高的情况下,如果打开SMP并行,不仅性能提升不明显,反而可能因为多线程间的资源竞争而导致性能劣化。 内存资源 查询并行后会导致内存使用量的增长,但每个算子使用内存上限仍受到work_mem等参数的限制。假设work_mem为4GB,并行度为2,那么每个并行线程所分到的内存上限为2GB。在work_mem较小或者系统内存不充裕的情况下,使用SMP并行后,可能出现数据下盘,导致查询性能劣化的问题。 网络带宽资源 为了实现查询并行执行,会新增并行线程间的数据交换算子。对于Local类Stream算子,所需要进行数据交换的线程在同一个DN内,通过内存交换,不会增加网络负担。而非Local类算子,需要通过网络进行数据交换,因此会加重网络负担。当网络资源成为瓶颈的情况下,并行可能会导致一定程度的劣化。 I/O资源 要实现并行扫描必定会增加I/O的资源消耗,因此只有在I/O资源充足的情况下,并行扫描才能够提高扫描性能。
-
SMP适用场景与限制 SMP适用场景: 支持并行的算子 计划中存在以下算子支持并行: Scan:支持行存普通表和行存分区表顺序扫描、列存普通表和列存分区表顺序扫描、HDFS内外表顺序扫描;支持GDS数据导入的外表扫描并行。以上均不支持复制表。 Join:HashJoin、NestLoop Agg:HashAgg、SortAgg、PlainAgg、WindowAgg(只支持partition by,不支持order by) Stream:Redistribute、Broadcast 其他:Result、Subqueryscan、Unique、Material、Setop、Append、VectoRow、RowToVec SMP特有算子 为了实现并行,新增了并行线程间的数据交换Stream算子供SMP特性使用。以下新增的算子可以看做Stream算子的子类: Local Gather:实现DN内部并行线程的数据汇总 Local Redistribute:在DN内部各线程之间,按照分布键进行数据重分布 Local Broadcast:将数据广播到DN内部的每个线程 Local RoundRobin:在DN内部各线程之间实现数据轮询分发 Split Redistribute:在集群跨DN的并行线程之间实现数据重分布 Split Broadcast:将数据广播到集群所有DN的并行线程 上述新增算子可以分为Local与非Local两类,Local类算子实现了DN内部并行线程间的数据交换,而非Local类算子实现了跨DN的并行线程间的数据交换。 示例说明 以TPCH Q1的并行计划为例: 在这个计划中,实现了Hdfs Scan以及HashAgg算子的并行,并且新增了Local Gather和Split Redistribute数据交换算子。 其中6号算子为Split Redistribute算子,上面标有的“dop: 4/4”表明Split Redistribute的发送端和接收端线程的并行度均为4。4号算子为Local Gather,上面标有“dop: 1/4”,该算子的发送端线程并行度为4,而接收端线程并行度为1,即下层的5号Hash Aggregate算子按照4并行度执行,而上层的1~3号算子按照串行执行,4号算子实现了DN内并行线程的数据汇总。 通过计划Stream算子上标明的dop信息即可看出各个算子的并行情况。 非适用场景:
-
其他因素对SMP性能的影响 除了资源因素外,还有一些因素也会对SMP并行性能造成影响。例如分区表中分区数据不均,以及系统并发度等因素。 数据倾斜对SMP性能的影响 当数据中存在严重数据倾斜时,并行效果较差。例如某表join列上某个值的数据量远大于其他值,开启并行后,根据join列的值对该表数据做hash重分布,使得某个并行线程的数据量远多于其他线程,造成长尾问题,导致并行后效果差。 系统并发度对SMP性能的影响 SMP特性会增加资源的使用,而在高并发场景下资源剩余较少。所以,如果在高并发场景下,开启SMP并行,会导致各查询之间严重的资源竞争问题。一旦出现了资源竞争的现象,无论是CPU、I/O、内存或者网络资源,都会导致整体性能的下降。因此在高并发场景下,开启SMP经常不能达到性能提升的效果,甚至可能引起性能劣化。
-
其他因素对SMP性能的影响 除了资源因素外,还有一些因素也会对SMP并行性能造成影响。例如分区表中分区数据不均,以及系统并发度等因素。 数据倾斜对SMP性能的影响 当数据中存在严重数据倾斜时,并行效果较差。例如某表join列上某个值的数据量远大于其他值,开启并行后,根据join列的值对该表数据做hash重分布,使得某个并行线程的数据量远多于其他线程,造成长尾问题,导致并行后效果差。 系统并发度对SMP性能的影响 SMP特性会增加资源的使用,而在高并发场景下资源剩余较少。所以,如果在高并发场景下,开启SMP并行,会导致各查询之间严重的资源竞争问题。一旦出现了资源竞争的现象,无论是CPU、I/O、内存或者网络资源,都会导致整体性能的下降。因此在高并发场景下,开启SMP经常不能达到性能提升的效果,甚至可能引起性能劣化。
-
资源对SMP性能的影响 SMP架构是一种利用富余资源来换取时间的方案,计划并行之后必定会引起资源消耗的增加,包括CPU、内存、I/O和网络带宽等资源的消耗都会出现明显的增长,而且随着并行度的增大,资源消耗也随之增大。当上述资源成为瓶颈的情况下,SMP无法提升性能,反而可能导致集群整体性能的劣化。SMP支持自适应特性,该特性会根据当前资源和查询特征,动态选取最优的并行度。下面对各种资源对SMP性能的影响情况分别进行说明: CPU资源 在一般客户场景中,系统CPU利用率不高的情况下,利用SMP并行架构能够更充分地利用系统CPU资源,提升系统性能。但当数据库服务器的CPU核数较少,CPU利用率已经比较高的情况下,如果打开SMP并行,不仅性能提升不明显,反而可能因为多线程间的资源竞争而导致性能劣化。 内存资源 查询并行后会导致内存使用量的增长,但每个算子使用内存上限仍受到work_mem等参数的限制。假设work_mem为4GB,并行度为2,那么每个并行线程所分到的内存上限为2GB。在work_mem较小或者系统内存不充裕的情况下,使用SMP并行后,可能出现数据下盘,导致查询性能劣化的问题。 网络带宽资源 为了实现查询并行执行,会新增并行线程间的数据交换算子。对于Local类Stream算子,所需要进行数据交换的线程在同一个DN内,通过内存交换,不会增加网络负担。而非Local类算子,需要通过网络进行数据交换,因此会加重网络负担。当网络资源成为瓶颈的情况下,并行可能会导致一定程度的劣化。 I/O资源 要实现并行扫描必定会增加I/O的资源消耗,因此只有在I/O资源充足的情况下,并行扫描才能够提高扫描性能。
-
SMP相关参数配置建议 如果要打开SMP自适应功能,要设置query_dop=0,需同步调整以下相关参数值,以获取更佳的dop选择: comm_usable_memory 当系统内存较大时,max_process_memory设置较大,可适当调大该值,建议设置为max_process_memory的5%,默认值为4GB。 comm_max_stream 设置建议值为:comm_max_stream=Min(dop_limit * dop_limit * 20 * 2, max_process_memory(字节数) * 0.025 / 总DN数 / 260),且该值在comm_max_stream取值范围内。 max_connections 设置建议值为:max_connections=dop_limit * 20 * 6 + 24,且该值在max_connections取值范围内。 公式中的dop_limit为集群中每个DN对应的CPU数,计算公式为:dop_limit = 单机器的CPU逻辑核数 / 单机器的DN数。
-
SMP适用场景与限制 SMP适用场景: 支持并行的算子 计划中存在以下算子支持并行: Scan:支持行存普通表和行存分区表顺序扫描、列存普通表和列存分区表顺序扫描、HDFS内外表顺序扫描;支持GDS数据导入的外表扫描并行。以上均不支持复制表。 Join:HashJoin、NestLoop Agg:HashAgg、SortAgg、PlainAgg、WindowAgg(只支持partition by,不支持order by) Stream:Redistribute、Broadcast 其他:Result、Subqueryscan、Unique、Material、Setop、Append、VectoRow、RowToVec SMP特有算子 为了实现并行,新增了并行线程间的数据交换Stream算子供SMP特性使用。以下新增的算子可以看做Stream算子的子类: Local Gather:实现DN内部并行线程的数据汇总 Local Redistribute:在DN内部各线程之间,按照分布键进行数据重分布 Local Broadcast:将数据广播到DN内部的每个线程 Local RoundRobin:在DN内部各线程之间实现数据轮询分发 Split Redistribute:在集群跨DN的并行线程之间实现数据重分布 Split Broadcast:将数据广播到集群所有DN的并行线程 上述新增算子可以分为Local与非Local两类,Local类算子实现了DN内部并行线程间的数据交换,而非Local类算子实现了跨DN的并行线程间的数据交换。 示例说明 以TPCH Q1的并行计划为例: 在这个计划中,实现了Hdfs Scan以及HashAgg算子的并行,并且新增了Local Gather和Split Redistribute数据交换算子。 其中6号算子为Split Redistribute算子,上面标有的“dop: 4/4”表明Split Redistribute的发送端和接收端线程的并行度均为4。4号算子为Local Gather,上面标有“dop: 1/4”,该算子的发送端线程并行度为4,而接收端线程并行度为1,即下层的5号Hash Aggregate算子按照4并行度执行,而上层的1~3号算子按照串行执行,4号算子实现了DN内并行线程的数据汇总。 通过计划Stream算子上标明的dop信息即可看出各个算子的并行情况。 非适用场景:
-
其他因素对LLVM性能的影响 LLVM优化效果不仅依赖于数据库内部具体的实现,还与当前所选择的硬件环境等有关。 表达式调用C-函数个数 数据库内部针对表达式计算并未实现全codegen,即在整个表达式计算中部分表达式实现了codegen,部分直接调用原本的C代码。如果整个表达式计算中后者占据了主要部分,使用LLVM动态编译优化,可能会导致性能劣化。通过设置log_min_messages的级别为DEBUG1可以查看到哪些表达式直接调用了C代码实现。 内存资源 LLVM特性的一个重要思想是保障数据的局域特性,即数据应尽可能的存放在寄存器中。同时应减少数据加载,因此在使用LLVM优化时应设置足够大的work_mem,保证对应使用LLVM优化的执行代码整个过程在内存中实现,否则可能引起性能劣化。 优化器代价估算 LLVM特性实现了简易的代价估算模型,即依据当前参与节点运算的表大小决定当前节点是否考虑使用LLVM动态编译优化。如果优化器低估了实际参与运算的行数,则原本可获得收益的未正常获得收益。反之亦然。
-
LLVM适用场景与限制 适用场景 支持LLVM的表达式。查询语句中存在以下的表达式支持LLVM优化: Case…when… 表达式 In表达式 Bool表达式 (And/Or/Not) BooleanTest表达式 (IS_NOT_KNOWN/IS_UNKNOWN/IS_TRUE/IS_NOT_TRUE/IS_FALSE/IS_NOT_FALSE) NullTest表达式 (IS_NOT_NULL/IS_NULL) Operator表达式 Function表达式 (lpad, substring, btrim, rtrim, length) Nullif表达式 表达式计算支持的数据类型包括bool,tinyint,smallint,int,bigint,float4,float8,numeric,date,time,timetz,timestamp,timestamptz,interval,bpchar,varchar,text,oid。 仅当表达式出现在以下场景时才会考虑是否使用LLVM动态编译优化: 向量化执行引擎中Scan节点的filter; Hash Join节点中的complicate hash condition、hash join filter、hash join target; Nested Loop节点中的filter、join filter; Merge Join节点的merge join filter、merge join target; Group节点中的filter表达式。
-
LLVM使用建议 目前LLVM在数据库内核侧已默认打开,用户可结合上述的分析进行配置,总体建议如下: 设置合理的work_mem,在允许的条件下尽可能设置较大的work_mem,如果出现大量下盘,则建议关闭LLVM动态编译优化(通过设置enable_codegen=off实现)。 设置合理的codegen_cost_threshold(默认值为10000),确保小数据量场景下避免使用LLVM动态编译优化。当codegen_cost_threshold的值设定后,因使用LLVM动态编译优化引入性能劣化,则建议增加codegen_cost_threshold的取值。 对于表达式计算使用LLVM动态编译优化,如果存在大量的调用C-函数的场景,建议关闭LLVM动态编译优化。 In表达式后常量列表长度不能超过10,否则不能执行LLVM编译优化。 在资源许可的情况下,数据量越大,可获得的性能提升效果越好。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格