云服务器内容精选

  • 配置描述 参数入口: 在应用提交时通过“--conf”设置这些参数,或者在客户端的“spark-defaults.conf”配置文件中调整如下参数。 表1 参数说明 参数 说明 默认值 spark.executor.memoryOverhead 用于指定每个executor的堆外内存大小(MB),增大该参数值,可以防止物理内存超限。该值是通过max(384,executor-memory*0.1)计算所得,最小值为384。 1024
  • 操作步骤 优化GC,调整老年代和新生代的大小和比例。在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:-XX:NewRatio。如," -XX:NewRatio=2",则新生代占整个堆空间的1/3,老年代占2/3。 开发Spark应用程序时,优化RDD的数据结构。 使用原始类型数组替代集合类,如可使用fastutil库。 避免嵌套结构。 Key尽量不要使用String。 开发Spark应用程序时,建议序列化RDD。 RDD做cache时默认是不序列化数据的,可以通过设置存储级别来序列化RDD减小内存。例如: testRDD.persist(StorageLevel.MEMORY_ONLY_SER)
  • 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:"-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps" ),如果频繁出现Full GC,需要优化GC。把RDD做Cache操作,通过日志查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。
  • 操作步骤 并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。 在会产生shuffle的操作函数内设置并行度参数,优先级最高。 testRDD.groupByKey(24) 在代码中配置“spark.default.parallelism”设置并行度,优先级次之。 val conf = new SparkConf() conf.set("spark.default.parallelism", 24) 在“$SPARK_HOME/conf/spark-defaults.conf”文件中配置“spark.default.parallelism”的值,优先级最低。 spark.default.parallelism 24
  • 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类的基本类型数据,性能的提升就几乎可以忽略。 KryoSerializer依赖Twitter的Chill库来实现,相对于JavaSerializer,主要的问题在于不是所有的Java Serializable对象都能支持,兼容性不好,所以需要手动注册类。 序列化功能用在两个地方:序列化任务和序列化数据。Spark任务序列化只支持JavaSerializer,数据序列化支持JavaSerializer和KryoSerializer。
  • 操作步骤 Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用JavaSerializer,通过配置让KryoSerializer作为数据序列化器来提升序列化性能。 在开发应用程序时,添加如下代码来使用KryoSerializer作为数据序列化器。 实现类注册器并手动注册类。 package com.etl.common; import com.esotericsoftware.kryo.Kryo; import org.apache.spark.serializer.KryoRegistrator; public class DemoRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { //以下为示例类,请注册自定义的类 kryo.register(AggrateKey.class); kryo.register(AggrateValue.class); } } 您可以在Spark客户端对spark.kryo.registrationRequired参数进行配置,设置是否需要Kryo注册序列化。 当参数设置为true时,如果工程中存在未被序列化的类,则会发生异常。如果设置为false(默认值),Kryo会自动将未注册的类名写到对应的对象中。此操作会对系统性能造成影响。设置为true时,用户需手动注册类,针对未序列化的类,系统不会自动写入类名,而是发生异常,相对比false,其性能较好。 配置KryoSerializer作为数据序列化器和类注册器。 val conf = new SparkConf() conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .set("spark.kryo.registrator", "com.etl.common.DemoRegistrator")