云服务器内容精选

  • Hive应用开发样例工程介绍 MRS 样例工程获取地址为https://github.com/huaweicloud/huaweicloud-mrs-example,切换分支为与MRS集群相匹配的版本分支,然后下载压缩包到本地后解压,即可获取各组件对应的样例代码工程。 当前MRS提供以下Hive相关样例工程: 表1 Hive相关样例工程 样例工程位置 描述 hive-examples/hive-jdbc-example hive-examples/hive-jdbc-example-multizk Hive JDBC处理数据Java示例程序。 本工程使用JDBC接口连接Hive,在Hive中执行相关数据操作。使用JDBC接口实现创建表、加载数据、查询数据等功能,还可实现在同一个客户端进程内同时访问 FusionInsight ZooKeeper和第三方的ZooKeeper,相关样例介绍请参见Hive JDBC访问样例程序。 hive-examples/hcatalog-example Hive HCatalog处理数据Java示例程序。 使用HCatalog接口实现通过Hive命令行方式对MRS Hive元数据进行数据定义和查询操作,相关样例介绍请参见HCatalog访问Hive样例程序。 hive-examples/python-examples 使用Python连接Hive执行SQL样例。 可实现使用Python对接Hive并提交数据分析任务,相关样例介绍请参见基于Python的Hive样例程序。 hive-examples/python3-examples 使用Python3连接Hive执行SQL样例。 可实现使用Python3对接Hive并提交数据分析任务,相关样例介绍请参见基于Python3的Hive样例程序。 父主题: Hive应用开发概述
  • Hive应用开发开发流程 开发流程中各阶段的说明如图1和表1所示。 图1 Hive应用程序开发流程 表1 Hive应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。 准备本地应用开发环境 准备连接集群配置文件 应用程序开发或运行过程中,需通过集群相关配置文件信息连接MRS集群,配置文件通常包括集群组件信息文件以及用于安全认证的用户文件,可从已创建好的MRS集群中获取相关内容。 用于程序调测或运行的节点,需要与MRS集群内节点网络互通,同时配置hosts 域名 信息。 准备连接Hive集群配置文件 配置并导入样例工程 HIve提供了不同场景下的多种样例程序,用户可获取样例工程并导入本地开发环境中进行程序学习。 导入并配置Hive样例工程 配置安全认证 如果您使用的是JDBC访问开启了Kerberos认证的MRS集群,需要进行安全认证。 配置Hive JDBC接口访问Hive安全认证 根据业务场景开发程序 根据实际业务场景开发程序,调用组件接口实现对应功能。 开发Hive应用 编译并运行程序 指导用户将开发好的程序编译提交运行并查看结果。 调测Hive应用 父主题: Hive应用开发概述
  • Hive简介 Hive是一个开源的,建立在Hadoop上的 数据仓库 框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、 CS V、TEXTFILE、RCFILE、ORCFILE、SEQUENCEFILE等存储格式,并支持自定义扩展。 多种客户端连接方式,支持JDBC接口。 Hive的主要应用于海量数据的离线分析(如 日志分析 ,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。 为保证Hive服务的高可用性、用户数据的安全及访问服务的可控制,在开源社区的Hive-3.1.0版本基础上,Hive新增如下特性: 基于Kerberos技术的安全认证机制。 数据文件加密机制。 完善的权限管理。 开源社区的Hive特性,请参见https://cwiki.apache.org/confluence/display/hive/designdocs。
  • Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、ORCFILE、SEQUENCEFILE等存储格式,并支持自定义扩展。 多种客户端连接方式,支持JDBC接口。 Hive的主要应用于海量数据的离线分析(如日志分析,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。 为保证Hive服务的高可用性、用户数据的安全及访问服务的可控制,在开源社区的Hive-3.1.0版本基础上,Hive新增如下特性: 数据文件加密机制:开源社区的Hive特性,请参见https://cwiki.apache.org/confluence/display/hive/designdocs。
  • Hive应用开发常用概念 keytab文件 存放用户信息的密钥文件。应用程序采用此密钥文件在MRS产品中进行API方式认证。 客户端 客户端直接面向用户,可通过Java API、Thrift API访问服务端进行Hive的相关操作。 HQL语言 Hive Query Language,类SQL语句。 HCatalog HCatalog是建立在Hive元数据之上的一个表信息管理层,吸收了Hive的DDL命令。为Mapreduce提供读写接口,提供Hive命令行接口来进行数据定义和元数据查询。基于MRS的HCatalog功能,Hive、Mapreduce开发人员能够共享元数据信息,避免中间转换和调整,能够提升数据处理的效率。 WebHCat WebHCat运行用户通过Rest API来执行Hive DDL,提交Mapreduce任务,查询Mapreduce任务执行结果等操作。 父主题: Hive应用开发概述
  • Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HiveQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON,CSV,TEXTFILE,RCFILE,ORCFILE,SEQUENCEFILE等存储格式,并支持自定义扩展。 多种客户端连接方式,支持JDBC接口。 Hive的主要应用于海量数据的离线分析(如日志分析,集群状态分析)、大规模的数据挖掘(用户行为分析,兴趣分区,区域展示)等场景下。