云服务器内容精选
-
约束限制 使用Notebook实例提交 DLI 作业必须使用弹性资源池下的通用队列。 Notebook实例关联的弹性资源池请确保预留资源大于16CUs,用于安装Notebook功能所需的组件。 每一个弹性资源池关联唯一的Notebook实例。 Notebook作业运行过程中产生的临时数据将会存储在DLI作业桶中,且必须使用并行文件系统。 请在ModelArts管理控制台管理Notebook实例。请参考管理Notebook实例。 Notebook实例用于代码编辑和开发,关联队列用于执行作业。 如需更换Notebook实例关联的队列请在ModelArts管理控制台进行相关操作。
-
步骤8:使用Notebook实例编写和调试代码 Notebook与DLI队列连接成功后,即可在“Notebook”区域下编辑和调试代码。 您可以选择使用Notebook提交作业,或在DLI管理控制台的Spark作业操作页面提交作业。 Notebook相关操作请参考JupyterLab简介及常用操作。 Notebook中的数据上传请参考上传文件至JupyterLab。 Notebook中的数据下载请参考下载JupyterLab文件到本地。
-
操作流程 创建弹性资源池并添加通用队列。 在DLI提交Notebook实例需要使用弹性资源池资源,并在弹性资源池中创建通用队列用于后续执行作业所需的计算资源。请参考步骤1:创建弹性资源池并添加通用队列。 创建Notebook实例所需的VPC和安全组。 配置弹性资源池开启Notebook后,弹性资源池会准备Notebook功能所需的组件。请参考步骤2:创建虚拟私有云和安全组。 创建增强型跨源连接用于打通DLI弹性弹性资源池和Notebook实例的网络。 请参考步骤3:创建增强型跨源连接。 准备创建Notebook实例所需的 自定义镜像 。 请参考步骤4:注册ModelArts自定义镜像。 创建自定义委托用于访问Notebook实例。 请参考步骤5:创建DLI自定义委托用于访问Notebook实例。 在DLI的弹性资源池中创建Notebook实例。 请参考步骤6:在DLI弹性资源池中创建Notebook实例。 配置Notebook访问DLI或LakeFormation元数据。 (可选)配置Notebook访问DLI元数据 (可选)配置Notebook访问LakeFormation元数据 在JupyterLab中编写和调试代码。 进入JupyterLab主页后,可在“Notebook”区域下编辑和调试代码。步骤8:使用Notebook实例编写和调试代码。
-
步骤4:注册ModelArts自定义镜像 基于ModelArts提供的MindSpore预置镜像,并借助ModelArts命令行工具,通过加载镜像构建模板并修改Dockerfile,构建出一个新镜像,最后注册后在Notebook使用。 ModelArts命令行工具请参考ma-cli镜像构建命令介绍。 基础镜像地址:swr.{endpoint}/atelier/pyspark_3_1_1:develop-remote-pyspark_3.1.1-py_3.7-cpu-ubuntu_18.04-x86_64-uid1000-20230308194728-68791b4 请按需更换地址中的Region名称后使用 例如,新加坡区域的endpoint为ap-southeast-3.myhuaweicloud.com 拼接后的基础镜像地址为:swr.ap-southeast-3.myhuaweicloud.com/atelier/pyspark_3_1_1:develop-remote-pyspark_3.1.1-py_3.7-cpu-ubuntu_18.04-x86_64-uid1000-20230308194728-68791b4 在ModelArts创建并注册自定义镜像的详细操作请参考在Notebook中通过Dockerfile从0制作自定义镜像。
-
步骤2:创建虚拟私有云和安全组 创建虚拟私有云 登录VPC管理控制台,进入创建虚拟私有云页面。 在“创建虚拟私有云”页面,根据界面提示配置VPC和子网的参数。 具体参数说明请参考创建虚拟私有云。 其中配置IPv4网段时,请确保VPC的IPv4网段不要与下列网段重复。 172.18.0.0/16、172.16.0.0/16、10.247.0.0/16 创建安全组 登录VPC管理控制台,进入安全组列表页面。 在安全组列表右上方,单击“创建安全组”。 进入“创建安全组”页面。根据界面提示,设置安全组参数。 具体参数说明请参考创建安全组。 请确保安全组需要对DLI弹性资源池网段放通TCP的8998和30000-32767端口。
-
前提条件 已创建DLI的SQL队列。创建DLI队列的操作可以参考创建DLI队列。 创建DLI队列时队列类型需要选择为“SQL队列”。 已创建云数据库RDS的MySQL的数据库实例。具体创建RDS集群的操作可以参考创建RDS MySQL数据库实例。 本示例RDS数据库引擎:MySQL 本示例RDS MySQL数据库版本:5.7。 已创建 CDM 迁移集群。创建CDM集群的操作可以参考创建CDM集群。 如果目标数据源为云下的数据库,则需要通过公网或者专线打通网络。通过公网互通时,需确保CDM集群已绑定EIP、CDM云上安全组出方向放通云下数据源所在的主机、数据源所在的主机可以访问公网且防火墙规则已开放连接端口。 数据源为云上服务RDS、 MRS 时,网络互通需满足如下条件: i. CDM集群与云上服务处于不同区域的情况下,需要通过公网或者专线打通网络。通过公网互通时,需确保CDM集群已绑定EIP,数据源所在的主机可以访问公网且防火墙规则已开放连接端口。 ii. CDM集群与云上服务同区域情况下,同虚拟私有云、同子网、同安全组的不同实例默认网络互通;如果同虚拟私有云但是子网或安全组不同,还需配置路由规则及安全组规则。 配置路由规则请参见如何配置路由规则章节,配置安全组规则请参见如何配置安全组规则章节。 iii. 此外,您还必须确保该云服务的实例与CDM集群所属的企业项目必须相同,如果不同,需要修改工作空间的企业项目。 本示例CDM集群的虚拟私有云、子网以及安全组和RDS MySQ L实例 保持一致。
-
步骤5:在DLI作业开发时使用LakeFormation元数据 DLI对接LakeFormation默认实例且完成LakeFormation的资源授权后,即可以在作业开发时使用LakeFormation元数据。 DLI SQL: LakeFormation SQL语法说明请参考DLI Spark SQL语法参考。 在执行SQL作业时,您可以在控制台选择执行SQL所在的catalog,如图2所示,或在SQL命令中指定catalogName。catalogName是DLI控制台的数据目录映射名。 图2 在SQL编辑器页面选择数据目录 对接LakeFormation实例场景,在创建数据库时需要指定数据库存储的OBS路径。 对接LakeFormation实例场景,在创建表时不支持设置表生命周期和多版本。 对接LakeFormation实例场景,LOAD DATA语句不支持datasource表,且LOAD DATA分区表必须指定分区。 在LakeFormation控制台创建的数据库和表中包含中文字符时,不支持在DLI执行相关数据库和表的操作。 对接LakeFormation实例场景,不支持指定筛选条件删除分区。 对接LakeFormation实例场景,不支持创建Truncate Datasource/Hive外表。 DLI暂不支持使用LakeFormation行过滤条件功能。 DLI读取binary类型的数据进行console展示时,会对binary数据进行Base64转换。 在DLI暂不支持LakeFormation的路径授权。 DLI Spark Jar: 本节介绍在DLI管理控制台提交Spark Jar作业时使用LakeFormation元数据的配置操作。 Spark Jar 示例 SparkSession spark = SparkSession.builder() .enableHiveSupport() .appName("java_spark_demo") .getOrCreate();spark.sql("show databases").show(); DLI管理控制台Spark Jar作业配置说明 (推荐)方式一:使用控制台提供的参数项(委托、元数据来源等)配置Spark Jar作业访问LakeFormation元数据 新建或编辑Spark Jar作业时,请参考表3Spark Jar作业访问LakeFormation元数据。 表3 配置Spark Jar作业访问LakeFormation元数据 参数 说明 配置示例 Spark版本 Spark 3.3.x及以上版本支持对接LakeFormation。 3.3.1 委托 使用Spark 3.3.1及以上版本的引擎执行作业时,需要您先在 IAM 页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: spark.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 访问元数据 配置开启Spark作业访问元数据功能。 是 元数据来源 配置Spark作业访问的元数据类型。本场景下请选择Lakeformation。 选择该参数后系统将自动为您的作业添加以下配置项用于加载lakeformation相关依赖。 spark.sql.catalogImplementation=hivespark.hadoop.hive-ext.dlcatalog.metastore.client.enable=truespark.hadoop.hive-ext.dlcatalog.metastore.session.client.class=com.huawei.cloud.dalf.lakecat.client.hiveclient.LakeCatMetaStoreClientog// lakeformation相关依赖加载spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/lakeformation/*spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/lakeformation/* “元数据来源”还支持在Spark(--conf)参数中配置,且系统优先以Spark(--conf)中配置信息为准。 优先推荐您使用控制台提供的“元数据来源”参数项进行配置。 Lakeformation 数据目录名称 配置Spark作业访问的数据目录名称。 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。如需指定LakeFormation其他实例请参考◦方式二:使用Spark(--conf)参数配置...在Spark(--conf)中配置连接的Lakeformation实例和数据目录。 选择该参数后系统将自动为您的作业添加以下配置项用于连接Lakeformation默认实例下的数据目录。 spark.hadoop.lakecat.catalogname.default=lfcatalog “数据目录名称”还支持在Spark(--conf)参数中配置,且系统优先以Spark(--conf)中配置信息为准。 优先推荐您使用控制台提供的“数据目录名称”参数项进行配置。 - Spark参数(--conf) “元数据来源”和“数据目录名称”均支持在Spark(--conf)参数中配置,且系统优先以Spark(--conf)中配置信息为准。 如果您需要配置访问Hudi数据表,可在Spark(--conf)参数中填加以下配置项。 spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtensionspark.hadoop.hoodie.write.lock.provider=org.apache.hudi.lakeformation.LakeCatMetastoreBasedLockProvider 如果您需要配置访问Delta数据表,可在Spark(--conf)参数中填加以下配置项。 spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension - 方式二:使用Spark(--conf)参数配置Spark Jar作业访问LakeFormation元数据 新建或编辑Spark Jar作业时,请在作业配置页面的Spark(--conf)参数中按需配置以下信息以访问LakeFormation元数据。 spark.sql.catalogImplementation=hivespark.hadoop.hive-ext.dlcatalog.metastore.client.enable=truespark.hadoop.hive-ext.dlcatalog.metastore.session.client.class=com.huawei.cloud.dalf.lakecat.client.hiveclient.LakeCatMetaStoreClientspark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension //支持hudi,可选spark.hadoop.hoodie.write.lock.provider=org.apache.hudi.lakeformation.LakeCatMetastoreBasedLockProvider //支持hudi,可选// 使用有OBS和lakeformation权限的委托访问,建议用户设置最小权限集spark.dli.job.agency.name=agencyForLakeformation//需要访问的lakeformation实例ID,在lakeformation console查看。可选,如不填写访问Lakeformation的默认实例spark.hadoop.lakeformation.instance.id=xxx//需要访问的lakeformation侧的CATA LOG 名称,在lakeformation console查看。可选,如不填写则默认值为hivespark.hadoop.lakecat.catalogname.default=lfcatalog// lakeformation相关依赖加载spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/lakeformation/*spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/lakeformation/* DLI Flink OpenSource SQL 示例1:委托的方式对接Lakeformation 创建Flink OpenSource SQL作业并配置如下参数: 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 开启checkpoint 勾选开启checkpoint。 开启 自定义参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 - 示例中关于Catalog的参数说明请参考表4 表4 Flink OpenSource SQL示例中关于Catalog的参数说明 参数 说明 是否必填 参数值 type catalog类型 是 固定值hive hive-conf-dir hive-conf路径,固定值/opt/flink/conf 是 固定值/opt/flink/conf default-database 默认数据库名称 否 默认default库 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031 CREATE CATALOG hiveWITH ( 'type' = 'hive', 'hive-conf-dir' = '/opt/flink/conf', -- 固定配置/opt/flink/conf 'default-database'='default' );USE CATALOG hive;CREATE TABLE IF NOT EXISTS dataGenSource612 (user_id string, amount int)WITH ( 'connector' = 'datagen', 'rows-per-second' = '1', 'fields.user_id.kind' = 'random', 'fields.user_id.length' = '3' );CREATE table IF NOT EXISTS printSink612 (user_id string, amount int)WITH ('connector' = 'print');INSERT INTO printSink612SELECT *FROM dataGenSource612; 示例2:DEW的方式对接Lakeformation 创建Flink OpenSource SQL作业并配置如下参数: 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 开启checkpoint 勾选开启checkpoint。 开启 自定义参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 - 示例中关于Catalog的参数说明请参考表5 需要指定properties.catalog.lakeformation.auth.identity.util.class参数值为com.huawei.flink.provider.lakeformation.FlinkDewIdentityGenerator,并且配置dew相关配置。 表5 Flink OpenSource SQL示例中关于Catalog的参数说明(DEW方式) 参数 说明 是否必填 参数值 type catalog类型 是 固定值hive hive-conf-dir hive-conf路径,固定值/opt/flink/conf 是 固定值/opt/flink/conf default-database 默认数据库名称 否 不填默认default库 properties.catalog.lakecat.auth.identity.util.class 认证信息获取类 是 dew方式必填,固定配置为com.huawei.flink.provider.lakeformation.FlinkDewIdentityGenerator properties.catalog.dew.projectId DEW所在的项目ID, 默认是Flink作业所在的项目ID。 是 使用dew方式必填 properties.catalog.dew.endpoint 指定要使用的DEW服务所在的endpoint信息。 是 使用dew方式必填。 配置示例:kms.xxx.com properties.catalog.dew.csms.secretName 在DEW服务的凭据管理中新建的通用凭据的名称。 是 使用dew方式必填 properties.catalog.dew.csms.version 在DEW服务的凭据管理中新建的通用凭据的版本号。 是 使用dew方式必填 properties.catalog.dew.access.key 在DEW服务的凭据中配置access.key值对应的key 是 使用dew方式必填 properties.catalog.dew.secret.key 在DEW服务的凭据中配置secret.key值对应的key 是 使用dew方式必填 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536 CREATE CATALOG myhiveWITH ( 'type' = 'hive', 'hive-conf-dir' = '/opt/flink/conf', 'default-database'='default', --下边是dew相关配置,请根据实际情况修改参数值 'properties.catalog.lakeformation.auth.identity.util.class' = 'com.huawei.flink.provider.lakeformation.FlinkDewIdentityGenerator', 'properties.catalog.dew.endpoint'='kms.xxx.com', 'properties.catalog.dew.csms.secretName'='obsAksK', 'properties.catalog.dew.access.key' = 'myak', 'properties.catalog.dew.secret.key' = 'mysk', 'properties.catalog.dew.projectId'='330e068af1334c9782f4226xxxxxxxxx', 'properties.catalog.dew.csms.version'='v9');USE CATALOG myhive;create table IF NOT EXISTS dataGenSource_dew612( user_id string, amount int) with ( 'connector' = 'datagen', 'rows-per-second' = '1', 'fields.user_id.kind' = 'random', 'fields.user_id.length' = '3');create table IF NOT EXISTS printSink_dew612( user_id string, amount int) with ( 'connector' = 'print');insert into printSink_dew612 select * from dataGenSource_dew612; 示例3:委托的方式对接Lakeformation写hudi表 创建Flink OpenSource SQL作业并配置如下参数: 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 开启checkpoint 勾选开启checkpoint。 开启 自定义参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 - 示例中关于Catalog的参数说明请参考表6。 表6 hudi类型Catalog参数说明 参数 说明 是否必填 参数值 type catalog类型 是 hudi表配置为hudi。 hive-conf-dir hive-conf路径,固定值/opt/flink/conf 是 固定值/opt/flink/conf。 default-database 默认数据库名称 否 默认default库。 mode 取值'hms' 或 'non-hms'。 'hms' 表示创建的 Hudi Catalog 会使用 Hive Metastore 存储元数据信息。 'non-hms'表示不使用Hive Metastore存储元数据信息。 是 固定值hms。 表7 hudi类型sink表的connector参数 参数 说明 是否必填 参数值 connector flink connector类型。 配置为hudi表示sink表是hudi表。 是 hudi path 表的基本路径。如果该路径不存在,则会创建它。 是 请参考示例代码中的配置值。 hoodie.datasource.write.recordkey.field hoodie表的唯一键字段名 否 这里配置order_id为唯一键。 EXTERNAL 是否外表 是 hudi表必填,且设置为true true CREATE CATALOG hive_catalog WITH ( 'type'='hive', 'hive-conf-dir' = '/opt/flink/conf', 'default-database'='test' );USE CATALOG hive_catalog;create table if not exists genSource618 ( order_id STRING, order_name STRING, price INT, weight INT) with ( 'connector' = 'datagen', 'rows-per-second' = '1', 'fields.order_id.kind' = 'random', 'fields.order_id.length' = '8', 'fields.order_name.kind' = 'random', 'fields.order_name.length' = '5');CREATE CATALOG hoodie_catalog WITH ( 'type'='hudi', 'hive.conf.dir' = '/opt/flink/conf', 'mode'='hms' -- supports 'dfs' mode that uses the DFS backend for table DDLs persistence );CREATE TABLE if not exists hoodie_catalog.`test`.`hudiSink618` ( `order_id` STRING PRIMARY KEY NOT ENFORCED, `order_name` STRING, `price` INT, `weight` INT, `create_time` BIGINT, `create_date` String) PARTITIONED BY (create_date) WITH ( 'connector' = 'hudi', 'path' = 'obs://xxx/catalog/dbtest3/hudiSink618', 'hoodie.datasource.write.recordkey.field' = 'order_id', 'write.precombine.field' = 'create_time', 'EXTERNAL' = 'true' -- must be set);insert into hoodie_catalog.`test`.`hudiSink618`select order_id, order_name, price, weight, UNIX_TIMESTAMP() as create_time, FROM_UNIXTIME(UNIX_TIMESTAMP(), 'yyyyMMdd') as create_datefrom genSource618; DLI Flink Jar 示例1:委托方式对接Lakeformation 开发Flink jar程序,编译并上传jar包到obs,本例上传到obs://obs-test/dlitest/目录 示例代码如下: 本例通过DataGen表产生随机数据并输出到Print结果表中。 其他connector类型可参考Flink 1.15支持的connector列表。 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 package com.huawei.test;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.EnvironmentSettings;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.text.SimpleDateFormat;@SuppressWarnings({"deprecation", "rawtypes", "unchecked"})public class GenToPrintTaskAgency { private static final Logger LOGGER = LoggerFactory.getLogger(GenToPrintTaskAgency.class); private static final String datePattern = "yyyy-MM-dd_HH-mm-ss"; public static void main(String[] args) { LOGGER.info("Start task."); ParameterTool paraTool = ParameterTool.fromArgs(args); String checkpointInterval = "180000000"; // set up execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings settings = EnvironmentSettings.newInstance() .inStreamingMode().build(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings); env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); env.getCheckpointConfig().setCheckpointInterval(Long.valueOf(checkpointInterval)); env.getCheckpointConfig().enableExternalizedCheckpoints( CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); SimpleDateFormat dateTimeFormat = new SimpleDateFormat(datePattern); String time = dateTimeFormat.format(System.currentTimeMillis()); RocksDBStateBackend rocksDbBackend = new RocksDBStateBackend( new FsStateBackend("obs://obs/xxx/testcheckpoint/" + time), true); env.setStateBackend(rocksDbBackend); String createCatalog = "CREATE CATALOG lf_catalog WITH (\n" + " 'type' = 'hive',\n" + " 'hive-conf-dir' = '/opt/hadoop/conf'\n" + " );"; tEnv.executeSql(createCatalog); String dataSource = "CREATE TABLE if not exists lf_catalog.`testdb`.`dataGenSourceJar618_1` (\n" + " user_id string,\n" + " amount int\n" + ") WITH (\n" + " 'connector' = 'datagen',\n" + " 'rows-per-second' = '1',\n" + " 'fields.user_id.kind' = 'random',\n" + " 'fields.user_id.length' = '3'\n" + ")";/*testdb是用户自定义的数数据库*/ tEnv.executeSql(dataSource); String printSink = "CREATE TABLE if not exists lf_catalog.`testdb`.`printSinkJar618_1` (\n" + " user_id string,\n" + " amount int\n" + ") WITH ('connector' = 'print')"; tEnv.executeSql(printSink);/*testdb是用户自定义的数数据库*/ String query = "insert into lf_catalog.`test`.`printSinkJar618_1` " + "select * from lf_catalog.`test`.`dataGenSourceJar618_1`"; tEnv.executeSql(query); }} 创建Flink jar作业并配置如下参数。 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 优化参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 - 示例2:DEW方式对接Lakeformation 开发Flink jar程序,编译并上传jar包到obs,本例上传到obs://obs-test/dlitest/目录 示例代码如下: 本例通过DataGen表产生随机数据并输出到Print结果表中。 其他connector类型可参考Flink 1.15支持的connector列表。 package com.huawei.test;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.EnvironmentSettings;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.text.SimpleDateFormat;@SuppressWarnings({"deprecation", "rawtypes", "unchecked"})public class GenToPrintTaskDew { private static final Logger LOGGER = LoggerFactory.getLogger(GenToPrintTaskAgency.class); private static final String datePattern = "yyyy-MM-dd_HH-mm-ss"; public static void main(String[] args) { LOGGER.info("Start task."); ParameterTool paraTool = ParameterTool.fromArgs(args); String checkpointInterval = "180000000"; // set up execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings settings = EnvironmentSettings.newInstance() .inStreamingMode().build(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings); env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); env.getCheckpointConfig().setCheckpointInterval(Long.valueOf(checkpointInterval)); env.getCheckpointConfig().enableExternalizedCheckpoints( CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); SimpleDateFormat dateTimeFormat = new SimpleDateFormat(datePattern); String time = dateTimeFormat.format(System.currentTimeMillis()); RocksDBStateBackend rocksDbBackend = new RocksDBStateBackend( new FsStateBackend("obs://obs/xxx/testcheckpoint/" + time), true); env.setStateBackend(rocksDbBackend); String createCatalog = "CREATE CATALOG lf_catalog WITH (\n" + " 'type' = 'hive',\n" + " 'hive-conf-dir' = '/opt/hadoop/conf',\n" + " 'properties.catalog.lakeformation.auth.identity.util.class' = 'com.huawei.flink.provider.lakeformation.FlinkDewIdentityGenerator',\n" + " 'properties.catalog.dew.endpoint'='kms.xxx.xxx.com',\n" + " 'properties.catalog.dew.csms.secretName'='obsAksK',\n" + " 'properties.catalog.dew.access.key' = 'ak',\n" + " 'properties.catalog.dew.secret.key' = 'sk',\n" + " 'properties.catalog.dew.projectId'='330e068af1334c9782f4226xxxxxxxxxx',\n" + " 'properties.catalog.dew.csms.version'='v9'\n" + " );"; tEnv.executeSql(createCatalog); String dataSource = "CREATE TABLE if not exists lf_catalog.`testdb`.`dataGenSourceJarDew618_1` (\n" + " user_id string,\n" + " amount int\n" + ") WITH (\n" + " 'connector' = 'datagen',\n" + " 'rows-per-second' = '1',\n" + " 'fields.user_id.kind' = 'random',\n" + " 'fields.user_id.length' = '3'\n" + ")"; tEnv.executeSql(dataSource);/*testdb是用户自定义的数数据库*/ String printSink = "CREATE TABLE if not exists lf_catalog.`testdb`.`printSinkJarDew618_1` (\n" + " user_id string,\n" + " amount int\n" + ") WITH ('connector' = 'print')"; tEnv.executeSql(printSink);/*testdb是用户自定义的数数据库*/ String query = "insert into lf_catalog.`test`.`printSinkJarDew618_1` " + "select * from lf_catalog.`test`.`dataGenSourceJarDew618_1`"; tEnv.executeSql(query); }} 创建Flink jar作业并配置如下参数。 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 优化参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 - 示例3:Flink jar支持Hudi表 开发Flink jar程序,编译并上传jar包到obs,本例上传到obs://obs-test/dlitest/目录 示例代码如下: 本例通过DataGen表产生随机数据并输出到Hudi结果表中。 其他connector类型可参考Flink 1.15支持的connector列表。 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 package com.huawei.test;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;import org.apache.flink.runtime.state.filesystem.FsStateBackend;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.table.api.EnvironmentSettings;import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.io.IOException;import java.text.SimpleDateFormat;public class GenToHudiTask4 { private static final Logger LOGGER = LoggerFactory.getLogger(GenToHudiTask4.class); private static final String datePattern = "yyyy-MM-dd_HH-mm-ss"; public static void main(String[] args) throws IOException { LOGGER.info("Start task."); ParameterTool paraTool = ParameterTool.fromArgs(args); String checkpointInterval = "30000"; // set up execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings settings = EnvironmentSettings.newInstance() .inStreamingMode().build(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, settings); env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); env.getCheckpointConfig().setCheckpointInterval(Long.valueOf(checkpointInterval)); env.getCheckpointConfig().enableExternalizedCheckpoints( CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); SimpleDateFormat dateTimeFormat = new SimpleDateFormat(datePattern); String time = dateTimeFormat.format(System.currentTimeMillis()); RocksDBStateBackend rocksDbBackend = new RocksDBStateBackend( new FsStateBackend("obs://xxx/jobs/testcheckpoint/" + time), true); env.setStateBackend(rocksDbBackend); String catalog = "CREATE CATALOG hoodie_catalog\n" + " WITH (\n" + " 'type'='hudi',\n" + " 'hive.conf.dir' = '/opt/hadoop/conf',\n" + " 'mode'='hms'\n" + " )"; tEnv.executeSql(catalog); String dwsSource = "CREATE TABLE if not exists genSourceJarForHudi618_1 (\n" + " order_id STRING,\n" + " order_name STRING,\n" + " price INT,\n" + " weight INT\n" + ") WITH (\n" + " 'connector' = 'datagen',\n" + " 'rows-per-second' = '1',\n" + " 'fields.order_id.kind' = 'random',\n" + " 'fields.order_id.length' = '8',\n" + " 'fields.order_name.kind' = 'random',\n" + " 'fields.order_name.length' = '8'\n" + ")"; tEnv.executeSql(dwsSource);/*testdb是用户自定义的数数据库*/ String printSinkdws = "CREATE TABLE if not exists hoodie_catalog.`testdb`.`hudiSinkJarHudi618_1` (\n" + " order_id STRING PRIMARY KEY NOT ENFORCED,\n" + " order_name STRING,\n" + " price INT,\n" + " weight INT,\n" + " create_time BIGINT,\n" + " create_date String\n" + ") WITH (" + "'connector' = 'hudi',\n" + "'path' = 'obs://xxx/catalog/dbtest3/hudiSinkJarHudi618_1',\n" + "'hoodie.datasource.write.recordkey.field' = 'order_id',\n" + "'EXTERNAL' = 'true'\n" + ")"; tEnv.executeSql(printSinkdws);/*testdb是用户自定义的数数据库*/ String query = "insert into hoodie_catalog.`testdb`.`hudiSinkJarHudi618_1` select\n" + " order_id,\n" + " order_name,\n" + " price,\n" + " weight,\n" + " UNIX_TIMESTAMP() as create_time,\n" + " FROM_UNIXTIME(UNIX_TIMESTAMP(), 'yyyyMMdd') as create_date\n" + " from genSourceJarForHudi618_1"; tEnv.executeSql(query); }} 表8 hudi类型sink表的connector参数 参数 说明 是否必填 参数值 connector flink connector类型。 配置为hudi表示sink表是hudi表。 是 hudi path 表的基本路径。如果该路径不存在,则会创建它。 是 请参考示例代码中的配置值。 hoodie.datasource.write.recordkey.field hoodie表的唯一键字段名 否 这里配置order_id为唯一键。 EXTERNAL 是否外表 是 hudi表必填,且设置为true true 创建Flink jar作业并配置如下参数。 参数 说明 配置示例 Flink版本 Flink 1.15及以上版本支持对接LakeFormation。 1.15 委托 使用Flink 1.15及以上版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在此处添加新建的委托信息。选择该参数后系统将自动为您的作业添加以下配置: flink.dli.job.agency.name=agency 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 - 优化参数 配置Flink作业访问的元数据类型。 本场景下请选择Lakeformation。 flink.dli.job.catalog.type=lakeformation 配置Flink作业访问的数据目录名称。 flink.dli.job.catalog.name=[lakeformation中的catalog名称] 此处选择的是在DLI管理控制台创建的数据目录,即DLI与Lakeformation默认实例下的数据目录的映射,该数据目录连接的是LakeFormation默认实例下的数据目录。 -
-
步骤3:在DLI管理控制台创建数据目录 在DLI管理控制台需要创建到Catalog的连接,才可以访问LakeFormation实例中存储的Catalog。 DLI仅支持对接LakeFormation默认实例,请在LakeFormation设置实例为默认实例。 LakeFormation中每一个数据目录只能创建一个映射,不能创建多个。 例如用户在DLI创建了映射名catalogMapping1对应LakeFormation数据目录:catalogA。创建成功后,在同一个项目空间下,不能再创建到catalogA的映射。 登录DLI管理控制台。 选择“SQL编辑器 ”。 在SQL编辑器页面,选择“数据目录”。 单击创建数据目录。 配置数据目录相关信息。 表2 数据目录配置信息 参数名称 是否必填 说明 外部数据目录名称 是 LakeFormation默认实例下的Catalog名称。 类型 是 当前只支持LakeFormation。 该选项已固定,无需填写。 数据目录映射名称 是 在DLI使用的Catalog映射名,用户在执行SQL语句的时候需要指定Catalog映射,以此来标识访问的外部的元数据。建议与外部数据目录名称保持一致。 当前仅支持连接LakeFormation默认实例的数据目录。 描述 否 自定义数据目录的描述信息。 单击“确定”创建数据目录。
-
步骤1:创建LakeFormation实例用于元数据存储 LakeFormation实例为元数据的管理提供基础资源,DLI仅支持对接LakeFormation的默认实例。 创建实例 登录LakeFormation管理控制台。 单击页面右上角“立即购买”或“购买实例”,进入实例购买页面。 首次创建实例时界面显示“立即购买”,如果界面已有LakeFormation实例则显示为“购买实例”。 按需配置LakeFormation实例参数,完成实例创建。 本例创建按需计费的共享型实例。 更多参数配置及说明,请参考创建LakeFormation实例。 设置实例为默认实例 查看实例“基本信息”中“是否为默认实例”的参数值。 “true”表示当前实例为默认实例。 “false”表示当前实例不为默认实例。 如果需要设置当前实例为默认实例,请单击页面右上角“设为默认实例”。 勾选操作影响后单击“确定”,将当前实例设置为默认实例。 当前DLI仅对接LakeFormation默认实例,变更默认实例后,可能对使用LakeFormation的周边服务产生影响,请谨慎操作。
-
约束限制 在表1中提供了支持对接LakeFormation获取元数据的队列和引擎类型。 查看队列的引擎类型和版本请参考查看队列的基本信息。 表1 LakeFormation获取元数据的队列和引擎类型 队列类型 引擎类型和支持的版本 default队列 Spark 3.3.x:支持对接LakeFormation获取元数据的队列和引擎。 HetuEngine 2.1.0:支持对接LakeFormation获取元数据的队列和引擎。 SQL队列 Spark 3.3.x:支持对接LakeFormation获取元数据的队列和引擎。 HetuEngine 2.1.0:支持对接LakeFormation获取元数据的队列和引擎。 通用队列 Flink作业场景:Flink 1.15及以上版本且使用弹性资源池队列时支持对接LakeFormation获取元数据。 DLI仅支持对接LakeFormation默认实例,请在LakeFormation设置实例为默认实例。 DLI支持读取Lakeformation的中Avro、Json、Parquet、Csv、Orc、Text、Hudi格式的数据。 LakeFormation数据目录中的库、表权限统一由LakeFormation管理。 DLI支持对接LakeFormation后,DLI原始库表下移至dli的数据目录下。
-
步骤4:授权使用LakeFormation资源 SQL作业场景 在进行SQL作业提交之前,需完成LakeFormation元数据、数据库、表、列和函数等资源授权,确保作业在执行过程中能够顺利访问所需的数据和资源。LakeFormation SQL资源权限支持列表提供了LakeFormation权限支持列表。 使用LakeFormation资源需要分别完成LakeFormation的IAM细粒度授权和LakeFormation SQL资源授权。 LakeFormation的IAM细粒度授权:授权使用LakeFormation API。 IAM服务通常提供了管理用户、组和角色的访问权限的方式。您可以在IAM控制台中创建策略(Policy),定义哪些用户或角色可以调用LakeFormation的API。然后,将这些策略附加到相应的用户或角色上。 方法1:基于角色授权: 即IAM最初提供的一种根据用户的工作职能定义权限的粗粒度授权机制。该机制以服务为粒度,提供有限的服务相关角色用于授权。 例如参考LakeFormation权限管理授予用户只读权限,允许查询LakeFormation相关元数据资源的权限。 或如下示例授予LakeFormation相关元数据资源的所有操作权限。 示例: { "Version": "1.1", "Statement": [ { "Effect": "Allow", "Action": [ "lakeformation:table:*", "lakeformation:database:*", "lakeformation:catalog:*", "lakeformation:function:*", "lakeformation:transaction:*", "lakeformation:policy:describe", "lakeformation:credential:describe" ] } ]} 方法2:基于策略的精细化授权: IAM提供的细粒度授权的能力,可以精确到具体服务的操作、资源以及请求条件等。 LakeFormation权限策略请参考LakeFormation权限和授权项。 IAM授权的具体操作请参考创建用户并授权使用LakeFormation。 LakeFormation SQL资源授权:授权使用LakeFormation具体资源(元数据、数据库、表、列和函数等)。 LakeFormation资源授权是指允许用户对特定资源的访问的权限,以此来控制对LakeFormation的数据和元数据的访问。 LakeFormation资源授权有两种方式: 方式一:在LakeFormation管理控制台对资源授权。 具体操作请参考LakeFormation用户指南中的新增授权。 了解LakeFormation SQL资源权限请参考数据权限概述。 方式二:在DLI管理控制台使用GRANT SQL语句授权 GRANT语句是SQL语言中用于授权的一种方式。 您可以使用GRANT语句来授予用户或角色对数据库、表、列、函数等的访问权限。 LakeFormation SQL资源权限支持列表提供了LakeFormation资源授权的策略。 Catalog资源暂时不支持在DLI SQL授权,请参考▪方式一:在LakeFormation管理控制台...在LakeFormation 管理控制台完成授权。 Spark Jar、Flink OpenSource SQL、Flink Jar作业场景: 方式1:使用委托授权:使用Spark 3.3.1及以上版本、Flink 1.15版本的引擎执行作业时,需要您先在IAM页面创建相关委托,并在配置作业时添加新建的委托信息。 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。 方式2:使用DEW授权: 已为授予IAM用户所需的IAM和Lakeformation权限,具体请参考•SQL作业场景的IAM授权的操作步骤。 已在DEW服务创建通用凭证,并存入凭据值。具体操作请参考创建通用凭据。 已创建DLI访问DEW的委托并完成委托授权。该委托需具备以下权限: DEW中的查询凭据的版本与凭据值ShowSecretVersion接口权限,csms:secretVersion:get。 DEW中的查询凭据的版本列表ListSecretVersions接口权限,csms:secretVersion:list。 DEW解密凭据的权限,kms:dek:decrypt。 委托权限示例请参考创建DLI自定义委托权限和常见场景的委托权限策略。
-
在DEW创建通用凭据 本例以配置RDS实例访问凭据为例,介绍在DEW保存凭据,并在DLI作业中的配置示例。 登录DEW管理控制台 选择“凭据管理”,进入“凭据管理”页面。 单击“创建凭据”,配置凭据基本信息 凭据名称:待创建凭据的名称。本例名称为secretInfo。 凭据值:配置RDS实例的用户名和密码。 第一行凭据值的键为MySQLUsername,值为RDS实例的用户名。 第二行凭据值的键为MySQLPassword,值为RDS实例的密码。 图1 设置凭据值 按需完成其他参数的配置后,单击“确定”保存凭据。 了解更多请参考创建通用凭据。
-
在DLI作业中使用DEW中创建的凭据 以Flink作业为例介绍使用DEW凭据的方法。 参考Flink Opensource SQL使用DEW管理访问凭据的语法格式,在作业中配置凭据信息。 WITH ( 'connector' = 'jdbc', 'url' = 'jdbc:mysql://MySQLAddress:MySQLPort/flink',--其中url中的flink表示MySQL中orders表所在的数据库名 'table-name' = 'orders', 'username' = 'MySQLUsername', -- DEW服务中,名称为secretInfo,且版本号v1的通用凭证,定义凭证值的键MySQLUsername,它的值为用户的敏感信息。 'password' = 'MySQLPassword', -- DEW服务中,名称为secretInfo,且版本号v1的通用凭证,定义凭证值的键MySQLPassword,它的值为用户的敏感信息。 'sink.buffer-flush.max-rows' = '1', 'dew.endpoint'='kms.xxxx.com', --使用的DEW服务所在的endpoint信息 'dew.csms.secretName'='secretInfo', --DEW服务通用凭据的凭据名称 'dew.csms.decrypt.fields'='username,password', --其中username,password字段值,需要利用DEW凭证管理,进行解密替换。 'dew.csms.version'='v1');
-
相关操作 了解更多使用DLI委托获取访问凭据的开发指南请参考表1。 表1 DLI委托权限配置场景开发指南 类型 操作指导 说明 Flink作业场景 Flink Opensource SQL使用DEW管理访问凭据 Flink Opensource SQL场景使用DEW管理和访问凭据的操作指导,将Flink作业的输出数据写入到Mysql或DWS时,在connector中设置账号、密码等属性。 Flink Jar 使用DEW获取访问凭证读写OBS 访问OBS的AKSK为例介绍Flink Jar使用DEW获取访问凭证读写OBS的操作指导。 用户获取Flink作业委托临时凭证 DLI提供了一个通用接口,可用于获取用户在启动Flink作业时设置的委托的临时凭证。该接口将获取到的该作业委托的临时凭证封装到com.huaweicloud.sdk.core.auth.BasicCredentials类中。 本操作介绍获取Flink作业委托临时凭证的操作方法。 Spark作业场景 Spark Jar 使用DEW获取访问凭证读写OBS 访问OBS的AKSK为例介绍Spark Jar使用DEW获取访问凭证读写OBS的操作指导。 用户获取Spark作业委托临时凭证 本操作介绍获取Spark Jar作业委托临时凭证的操作方法。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格