云服务器内容精选
-
Step2 构建成功的镜像注册到镜像管理模块 将Step1 在Notebook中构建一个新镜像中构建成功的 自定义镜像 注册到镜像管理中,方便后续使用。 登录ModelArts控制台,在左侧导航栏中选择“镜像管理”,单击“注册镜像”,进入注册镜像页面。 输入镜像源地址,选择架构和类型后,单击“立即注册”。 “镜像源”:地址为swr.cn-north-4-myhuaweicloud.com/custom_test/tensorflow2.1:1.0.0。其中custom_test/tensorflow2.1:1.0.0为8镜像构建脚本中设置的镜像地址。 “架构”:选择X86_64 “类型”:选择CPU 图7 注册镜像 注册完成后,可以在镜像管理页面查看到注册成功的镜像。
-
模型包文件样例 模型包文件model.zip中需要用户自己准备模型文件,此处仅是举例示意说明,以一个手写数字识别模型为例。 Model目录下必须要包含推理脚本文件customize_service.py,目的是为开发者提供模型预处理和后处理的逻辑。 图6 推理模型model目录示意图(需要用户自己准备模型文件) 推理脚本customize_service.py的具体写法要求可以参考模型推理代码编写说明。 本案例中提供的customize_service.py文件具体内容如下: import logging import threading import numpy as np import tensorflow as tf from PIL import Image from model_service.tfserving_model_service import TfServingBaseService class mnist_service(TfServingBaseService): def __init__(self, model_name, model_path): self.model_name = model_name self.model_path = model_path self.model = None self.predict = None # 非阻塞方式加载saved_model模型,防止阻塞超时 thread = threading.Thread(target=self.load_model) thread.start() def load_model(self): # load saved_model 格式的模型 self.model = tf.saved_model.load(self.model_path) signature_defs = self.model.signatures.keys() signature = [] # only one signature allowed for signature_def in signature_defs: signature.append(signature_def) if len(signature) == 1: model_signature = signature[0] else: logging.warning("signatures more than one, use serving_default signature from %s", signature) model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY self.predict = self.model.signatures[model_signature] def _preprocess(self, data): images = [] for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((28, 28, 1)) images.append(image1) images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32) preprocessed_data = images return preprocessed_data def _inference(self, data): return self.predict(data) def _postprocess(self, data): return { "result": int(data["output"].numpy()[0].argmax()) }
-
Dockerfile模板 Dockerfile样例,此样例可以直接另存为一个Dockerfile文件使用。此处可以使用的基础镜像列表请参见推理专属预置镜像列表。 FROM swr.cn-north-4.myhuaweicloud.com/atelier/tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-20221121111529-d65d817 # here create a soft link from '/home/ma-user/anaconda/lib/python3.7/site-packages/model_service' to '/home/ma-user/infer/model_service'. It’s the build-in inference framework code dir # if the installed python version of this base image is python3.8, you should create a soft link from '/home/ma-user/anaconda/lib/python3.8/site-packages/model_service' to '/home/ma-user/infer/model_service'. USER root RUN ln -s /home/ma-user/anaconda/lib/python3.7/site-packages/model_service /home/ma-user/infer/model_service USER ma-user # here we supply a demo, you can change it to your own model files ADD model/ /home/ma-user/infer/model/1 USER root RUN chown -R ma-user:ma-group /home/ma-user/infer/model/1 USER ma-user # default MODELARTS_SSL_CLIENT_VERIFY switch is "true". In order to debug, we set it to be "false" ENV MODELARTS_SSL_CLIENT_VERIFY="false" # change your port and protocol here, default is 8443 and https # ENV MODELARTS_SERVICE_PORT=8080 # ENV MODELARTS_SSL_ENABLED="false" # add pip install here # RUN pip install numpy==1.16.4 # RUN pip install -r requirements.txt # default cmd, you can chage it here # CMD sh /home/ma-user/infer/run.sh
-
场景说明 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts,创建为模型。 本文详细介绍如何在ModelArts的开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。本案例仅适用于华为云北京四和上海一站点。 操作流程如下: Step1 在Notebook中构建一个新镜像:在ModelArts的开发环境Notebook中制作自定义镜像,镜像规范可参考创建模型的自定义镜像规范。 Step2 构建成功的镜像注册到镜像管理模块:将构建成功的自定义镜像注册到ModelArts的镜像管理模块中,方便下一步调试。 Step3 在Notebook中变更镜像并调试:在Notebook中调试镜像。 Step4 使用调试成功的镜像用于推理部署:将调试完成的镜像导入ModelArts的模型管理中,并部署上线。
-
创建开发环境并使用 镜像注册成功后,即可在ModelArts控制台的Notebook页面,创建开发环境时选择该自定义镜像。 图7 创建开发环境 打开开发环境,即可看到Dockerfile中创建的conda环境pytorch_1_8。 图8 打开开发环境 单击图中的pytorch_1_8,即可创建一个ipynb文件,导入torch,可以看到安装的pytorch 1.8已经能够使用。 图9 创建一个ipynb文件 再打开一个Terminal,查看ffmpeg和gcc的版本,是Dockerfile中安装的版本。 图10 查看ffmpeg和gcc的版本
-
制作自定义镜像 这一节描述如何编写一个Dockerfile,并据此构建出一个新镜像在Notebook创建实例并使用。关于Dockerfile的具体编写方法,请参考官网。 查询基础镜像(第三方镜像可跳过此步骤) ModelArts提供的公共镜像,请参考Notebook专属预置镜像列表,根据预置镜像的引擎类型在对应的章节查看镜像URL。 连接 容器镜像服务 。 登录容器 镜像服务 控制台。选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。 图4 获取登录指令 此处生成的登录指令有效期为24小时,如果需要长期有效的登录指令,请参见获取长期有效登录指令。获取了长期有效的登录指令后,在有效期内的临时登录指令仍然可以使用。 登录指令末尾的 域名 为镜像仓库地址,请记录该地址,后面会使用到。 在安装容器引擎的机器中执行上一步复制的登录指令。登录成功会显示“Login Succeeded”。 拉取基础镜像或第三方镜像(此处以基础镜像举例,第三方镜像直接替换镜像地址)。 拉取ModelArts提供的公共镜像(请参考预置镜像)。 docker pull swr.cn-north-4.myhuaweicloud.com/atelier/notebook2.0-pytorch-1.4-kernel-cp37:3.3.3-release-v1-20220114 编写Dockerfile。 vim一个Dockerfile,如果使用的基础镜像是ModelArts提供的公共镜像,Dockerfile的具体内容可参考Dockerfile文件(基础镜像为ModelArts提供)。 如果使用的基础镜像是第三方镜像(非ModelArts提供的公共镜像),Dockerfile文件中需要添加uid为1000的用户ma-user和gid为100的用户组ma-group,具体可参考Dockerfile文件(基础镜像为非ModelArts提供)。 本例的Dockerfile将基于PyTorch基础镜像安装pytorch 1.8, ffmpeg 3和gcc 8,构建一个面向AI任务的镜像。 构建镜像 使用docker build命令从Dockerfile构建出一个新镜像。命令参数解释如下: “-t” 指定了新的镜像地址,包括{局点信息}/{组织名称}/{镜像名称}:{版本名称},请根据实际填写。建议使用完整的swr地址,因为后续的调试和注册需要使用。 “-f ”指定了Dockerfile的文件名,根据实际填写。 最后的“ . ”指定了构建的上下文是当前目录,根据实际填写。 docker build -t swr.cn-north-4.myhuaweicloud.com/sdk-test/pytorch_1_8:v1 -f Dockerfile . 图5 构建成功
-
使用场景和构建流程说明 用户可以使用ModelArts提供的基础镜像或第三方的镜像来编写Dockerfile,在E CS 服务器上构建出完全适合自己的镜像。然后将镜像进行注册,用以创建新的开发环境,满足自己的业务需求。 本案例将基于ModelArts提供的PyTorch基础镜像,安装pytorch 1.8、ffmpeg 3和gcc 8,构建一个面向AI开发的新环境。 主要流程如下图所示: 图1 构建与调测镜像流程 本案例适用于华为云-北京四Region。
-
Notebook自定义镜像规范 制作自定义镜像时,Base镜像需满足如下规范: 基于昇腾、Dockerhub官网等官方开源的镜像制作,开源镜像需要满足如下操作系统约束: x86:Ubuntu18.04、Ubuntu20.04 ARM:Euler2.8.3、Euler2.10.7 Ubuntu20.04.6可能有兼容性问题,请优先使用低于该版本的操作系统。 不满足以上镜像规范,所制作的镜像使用可能会出现故障,请用户检查镜像规范,并参考Notebook自定义镜像故障基础排查自行排查,如未解决请联系华为技术工程师协助解决。
-
准备Docker机器并配置环境信息 准备一台具有Docker功能的机器,如果没有,建议申请一台弹性云服务器并购买弹性公网IP,并在准备好的机器上安装必要的软件。 ModelArts提供了ubuntu系统的脚本,方便安装docker。 本地Linux机器的操作等同ECS服务器上的操作,请参考本案例。 登录ECS控制台,购买弹性云服务器,镜像选择“公共镜像”,推荐使用ubuntu18.04的镜像;系统盘设置为100GiB。具体操作请参考购买并登录弹性云服务器。 图2 选择镜像和磁盘 购买弹性公网IP并绑定到弹性云服务器。具体操作请参考配置网络。 配置VM环境。 在docker机器中,使用如下命令下载安装脚本。 wget https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/modelarts/custom-image-build/install_on_ubuntu1804.sh 当前仅支持ubuntu系统的脚本。 在docker机器中并执行如下命令,即可完成环境配置。 bash install_on_ubuntu1804.sh 图3 配置成功 source /etc/profile 安装脚本依次执行了如下任务: 安装docker。 如果挂载了GPU,则会安装nvidia-docker2,用以将GPU挂载到docker容器中。
-
准备工作 准备一套可以连接外部网络,装有Linux系统并安装18.09.7及以上版本docker的虚拟机或物理机用作镜像构建节点,以下称“构建节点”。 可以通过执行docker pull、apt-get update/upgrade和pip install命令判断是否可正常访问外部可用的开源软件仓库,若可以正常访问表示环境已连接外部网络。 上述的虚拟机或物理机需要为arm64架构。 建议构建节点安装的Linux系统版本为Ubuntu 18.04。 本指导使用/opt目录作为构建任务承载目录,请确保该目录下可用存储空间大于30GB。 Docker的安装可以参考官方文档:Install Docker Engine on Ubuntu。MiniConda与tflite安装包为第三方安装包,ModelArts不对其安全相关问题进行负责,如用户有安全方面的需求,可以对该安装包进行加固后发布成同样名称的文件上传到构建节点。
-
上传镜像至SWR服务 登录容器镜像服务控制台,选择区域,要和ModelArts区域保持一致,否则无法选择到镜像。 单击右上角“创建组织”,输入组织名称完成组织创建。请自定义组织名称,本示例使用“deep-learning”,下面的命令中涉及到组织名称“deep-learning”也请替换为自定义的值。 单击右上角“登录指令”,获取登录访问指令,本文选择复制临时登录指令。 以root用户登录本地环境,输入复制的SWR临时登录指令。 上传镜像至容器镜像服务镜像仓库。 使用docker tag命令给上传镜像打标签。 #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker tag pytorch:2.1.0-cann7.0.0 swr.{region-id}.{domain}/deep-learning/pytorch:2.1.0-cann7.0.0 #此处以华为云cn-north-4为例 sudo docker tagpytorch:2.1.0-cann7.0.0 swr.cn-north-4.myhuaweicloud.com/deep-learning/pytorch:2.1.0-cann7.0.0 使用docker push命令上传镜像。 #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。 sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:2.1.0-cann7.0.0 #此处以华为云cn-north-4为例 sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/pytorch:2.1.0-cann7.0.0 完成镜像上传后,在容器镜像服务控制台的“我的镜像”页面可查看已上传的自定义镜像。 “swr.cn-north-4.myhuaweicloud.com/deep-learning/pytorch:2.1.0-cann7.0.0”即为此自定义镜像的“SWR_URL”。
-
Step1 创建OBS桶和文件夹 在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。如下示例中,请创建命名为“test-modelarts”的桶,并创建如表1所示的文件夹。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1 OBS桶文件夹列表 文件夹名称 用途 obs://test-modelarts/ascend/demo-code/ 用于存储Ascend训练脚本文件。 obs://test-modelarts/ascend/demo-code/run_ascend/ 用于存储Ascend训练脚本的启动脚本。 obs://test-modelarts/ascend/log/ 用于存储训练日志文件。
-
场景描述 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用Ascend规格资源运行训练作业。 ubuntu-18.04 cann-6.3.RC2 (商用版本) python-3.7.13 mindspore-2.1.1 本教程以cann-6.3.RC2.、mindspore-2.1.1为例介绍。 本示例仅用于示意Ascend容器镜像制作流程,且在匹配正确的Ascend驱动/固件版本的专属资源池上运行通过。
-
Step2 准备脚本文件并上传至OBS中 准备本案例所需训练脚本mindspore-verification.py文件和Ascend的启动脚本文件(共5个)。 训练脚本文件具体内容请参见训练mindspore-verification.py文件。 Ascend的启动脚本文件包括以下5个,具体脚本内容请参见Ascend的启动脚本文件。 run_ascend.py common.py rank_table.py manager.py fmk.py mindspore-verification.py和run_ascend.py脚本文件在创建训练作业时的“启动命令”参数中调用,具体请参见启动命令。 run_ascend.py脚本运行时会调用common.py、rank_table.py、manager.py、fmk.py脚本。 上传训练脚本mindspore-verification.py文件至OBS桶的“obs://test-modelarts/ascend/demo-code/”文件夹下。 上传Ascend的启动脚本文件(共5个)至OBS桶的“obs://test-modelarts/ascend/demo-code/run_ascend/”文件夹下。
-
Step5 在ModelArts上创建Notebook并调试 将上传到SWR上的镜像注册到ModelArts的镜像管理中。 登录ModelArts管理控制台,在左侧导航栏中选择“镜像管理 ”,单击“注册镜像”,根据界面提示注册镜像。注册后的镜像可以用于创建Notebook。 在Notebook中使用自定义镜像创建Notebook并调试,调试成功后,保存镜像。 在Notebook中使用自定义镜像创建Notebook操作请参见基于自定义镜像创建Notebook实例。 保存Notebook镜像操作请参见保存Notebook镜像环境。 已有的镜像调试成功后,再使用ModelArts训练模块训练作业。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格