云服务器内容精选

  • 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
  • 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train #解压代码包后自动生成的代码目录,无需用户创建 |── AscendSpeed # 代码目录 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能代码包 |──scripts/ # 各模型训练需要的启动脚本,训练脚本以分类的方式集中在scripts文件夹中。 # 自动生成数据目录结构 |── processed_for_input #目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建 |── ${model_name} # 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |── lora # lora微调输出权重 |── sft # 增量训练输出权重 |── pretrain # 预训练输出权重 |── tokenizers #tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── train-00000-of-00001-a09b74b3ef9c3b56.parquet #原始数据文件 |── alpaca_gpt4_data.json #微调数据文件
  • 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/home/ma-user/ws/tokenizers/Llama2-{MODEL_TYPE}目录,如Llama2-70B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Llama2-70B为例。 cd /home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。
  • 模型软件包结构说明 本教程需要使用到的AscendCloud-6.3.911中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ # 针对昇腾云平台适配的功能补丁包 |──scripts/ # 训练需要的启动脚本 |──llama2 # llama2系列模型执行脚本的文件夹 |──llama3 # llama3系列模型执行脚本的文件夹 |──qwen # Qwen系列模型执行脚本的文件夹 |──qwen1.5 # Qwen1.5系列模型执行脚本的文件夹 |── ... |── dev_pipeline.sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools # 推理工具
  • 准备本地横向联邦数据资源 上传数据集文件(作业参与方) 上传数据集文件到计算节点挂载路径下,供计算节点执行的脚本读取。如果是主机挂载,上传到宿主机的挂载路径下。如果是OBS挂载,使用华为云提供的 对象存储服务 ,上传到当前计算节点使用的对象桶中。 图5 对象桶名称 此处以主机挂载为例: 创建一个主机挂载的计算节点Agent1,挂载路径为/tmp/tics1/。 使用文件上传工具上传包含数据集iris1.csv的dataset文件夹到宿主机/tmp/tics1/目录下。 iris1.csv内容如下: sepal_length,sepal_width,petal_length,petal_width,class 5.1,3.5,1.4,0.3,Iris-setosa 5.7,3.8,1.7,0.3,Iris-setosa 5.1,3.8,1.5,0.3,Iris-setosa 5.4,3.4,1.7,0.2,Iris-setosa 5.1,3.7,1.5,0.4,Iris-setosa 4.6,3.6,1,0.2,Iris-setosa 5.1,3.3,1.7,0.5,Iris-setosa 4.8,3.4,1.9,0.2,Iris-setosa 5,3,1.6,0.2,Iris-setosa 5,3.4,1.6,0.4,Iris-setosa 5.2,3.5,1.5,0.2,Iris-setosa 5.2,3.4,1.4,0.2,Iris-setosa 4.7,3.2,1.6,0.2,Iris-setosa 4.8,3.1,1.6,0.2,Iris-setosa 5.4,3.4,1.5,0.4,Iris-setosa 5.2,4.1,1.5,0.1,Iris-setosa 5.5,4.2,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5,3.2,1.2,0.2,Iris-setosa 5.5,3.5,1.3,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 4.4,3,1.3,0.2,Iris-setosa 5.1,3.4,1.5,0.2,Iris-setosa 5,3.5,1.3,0.3,Iris-setosa 4.5,2.3,1.3,0.3,Iris-setosa 4.4,3.2,1.3,0.2,Iris-setosa 5,3.5,1.6,0.6,Iris-setosa 5.1,3.8,1.9,0.4,Iris-setosa 4.8,3,1.4,0.3,Iris-setosa 5.1,3.8,1.6,0.2,Iris-setosa 4.6,3.2,1.4,0.2,Iris-setosa 5.3,3.7,1.5,0.2,Iris-setosa 5,3.3,1.4,0.2,Iris-setosa 6.8,2.8,4.8,1.4,Iris-versicolor 6.7,3,5,1.7,Iris-versicolor 6,2.9,4.5,1.5,Iris-versicolor 5.7,2.6,3.5,1,Iris-versicolor 5.5,2.4,3.8,1.1,Iris-versicolor 5.5,2.4,3.7,1,Iris-versicolor 5.8,2.7,3.9,1.2,Iris-versicolor 6,2.7,5.1,1.6,Iris-versicolor 5.4,3,4.5,1.5,Iris-versicolor 6,3.4,4.5,1.6,Iris-versicolor 6.7,3.1,4.7,1.5,Iris-versicolor 6.3,2.3,4.4,1.3,Iris-versicolor 5.6,3,4.1,1.3,Iris-versicolor 5.5,2.5,4,1.3,Iris-versicolor 5.5,2.6,4.4,1.2,Iris-versicolor 6.1,3,4.6,1.4,Iris-versicolor 5.8,2.6,4,1.2,Iris-versicolor 5,2.3,3.3,1,Iris-versicolor 5.6,2.7,4.2,1.3,Iris-versicolor 5.7,3,4.2,1.2,Iris-versicolor 5.7,2.9,4.2,1.3,Iris-versicolor 6.2,2.9,4.3,1.3,Iris-versicolor 5.1,2.5,3,1.1,Iris-versicolor 5.7,2.8,4.1,1.3,Iris-versicolor 6.3,3.3,6,2.5,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 7.1,3,5.9,2.1,Iris-virginica 6.3,2.9,5.6,1.8,Iris-virginica 6.5,3,5.8,2.2,Iris-virginica 7.6,3,6.6,2.1,Iris-virginica 4.9,2.5,4.5,1.7,Iris-virginica 7.3,2.9,6.3,1.8,Iris-virginica 6.7,2.5,5.8,1.8,Iris-virginica 7.2,3.6,6.1,2.5,Iris-virginica 6.5,3.2,5.1,2,Iris-virginica 6.4,2.7,5.3,1.9,Iris-virginica 6.8,3,5.5,2.1,Iris-virginica 5.7,2.5,5,2,Iris-virginica 5.8,2.8,5.1,2.4,Iris-virginica 6.4,3.2,5.3,2.3,Iris-virginica 6.5,3,5.5,1.8,Iris-virginica 7.7,3.8,6.7,2.2,Iris-virginica 7.7,2.6,6.9,2.3,Iris-virginica 6,2.2,5,1.5,Iris-virginica 6.9,3.2,5.7,2.3,Iris-virginica 5.6,2.8,4.9,2,Iris-virginica 7.7,2.8,6.7,2,Iris-virginica 6.3,2.7,4.9,1.8,Iris-virginica 6.7,3.3,5.7,2.1,Iris-virginica 7.2,3.2,6,1.8,Iris-virginica 为了使容器内的计算节点程序有权限能够读取到文件,使用命令chown -R 1000:1000 /tmp/tics1/修改挂载目录下的文件的属主和组为1000:1000。 在第二台主机上创建计算节点Agent2,挂载路径为/tmp/tics2/。上传包含数据集iris2.csv的dataset文件夹到宿主机目录下,修改属主。 iris2.csv的内容如下: sepal_length,sepal_width,petal_length,petal_width,class 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa 4.8,3.4,1.6,0.2,Iris-setosa 4.8,3,1.4,0.1,Iris-setosa 4.3,3,1.1,0.1,Iris-setosa 5.8,4,1.2,0.2,Iris-setosa 5.7,4.4,1.5,0.4,Iris-setosa 5.4,3.9,1.3,0.4,Iris-setosa 7,3.2,4.7,1.4,Iris-versicolor 6.4,3.2,4.5,1.5,Iris-versicolor 6.9,3.1,4.9,1.5,Iris-versicolor 5.5,2.3,4,1.3,Iris-versicolor 6.5,2.8,4.6,1.5,Iris-versicolor 5.7,2.8,4.5,1.3,Iris-versicolor 6.3,3.3,4.7,1.6,Iris-versicolor 4.9,2.4,3.3,1,Iris-versicolor 6.6,2.9,4.6,1.3,Iris-versicolor 5.2,2.7,3.9,1.4,Iris-versicolor 5,2,3.5,1,Iris-versicolor 5.9,3,4.2,1.5,Iris-versicolor 6,2.2,4,1,Iris-versicolor 6.1,2.9,4.7,1.4,Iris-versicolor 5.6,2.9,3.6,1.3,Iris-versicolor 6.7,3.1,4.4,1.4,Iris-versicolor 5.6,3,4.5,1.5,Iris-versicolor 5.8,2.7,4.1,1,Iris-versicolor 6.2,2.2,4.5,1.5,Iris-versicolor 5.6,2.5,3.9,1.1,Iris-versicolor 5.9,3.2,4.8,1.8,Iris-versicolor 6.1,2.8,4,1.3,Iris-versicolor 6.3,2.5,4.9,1.5,Iris-versicolor 6.1,2.8,4.7,1.2,Iris-versicolor 6.4,2.9,4.3,1.3,Iris-versicolor 6.6,3,4.4,1.4,Iris-versicolor 6.8,2.8,4.8,1.4,Iris-versicolor 6.2,2.8,4.8,1.8,Iris-virginica 6.1,3,4.9,1.8,Iris-virginica 6.4,2.8,5.6,2.1,Iris-virginica 7.2,3,5.8,1.6,Iris-virginica 7.4,2.8,6.1,1.9,Iris-virginica 7.9,3.8,6.4,2,Iris-virginica 6.4,2.8,5.6,2.2,Iris-virginica 6.3,2.8,5.1,1.5,Iris-virginica 6.1,2.6,5.6,1.4,Iris-virginica 7.7,3,6.1,2.3,Iris-virginica 6.3,3.4,5.6,2.4,Iris-virginica 6.4,3.1,5.5,1.8,Iris-virginica 6,3,4.8,1.8,Iris-virginica 6.9,3.1,5.4,2.1,Iris-virginica 6.7,3.1,5.6,2.4,Iris-virginica 6.9,3.1,5.1,2.3,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 6.8,3.2,5.9,2.3,Iris-virginica 6.7,3.3,5.7,2.5,Iris-virginica 6.7,3,5.2,2.3,Iris-virginica 6.3,2.5,5,1.9,Iris-virginica 6.5,3,5.2,2,Iris-virginica 6.2,3.4,5.4,2.3,Iris-virginica 5.9,3,5.1,1.8,Iris-virginica 准备模型文件/初始权重(作业发起方) 作业发起方需要提供模型、初始权重(非必须),上传到Agent1的挂载目录下并使用命令chown -R 1000:1000 /tmp/tics1/修改挂载目录下的文件的属主和组。 使用python代码创建模型文件,保存为二进制文件model.h5,以鸢尾花为例,生成如下的模型: import tensorflow as tf import keras model = keras.Sequential([ keras.layers.Dense(4, activation=tf.nn.relu, input_shape=(4,)), keras.layers.Dense(6, activation=tf.nn.relu), keras.layers.Dense(3, activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.save("d:/model.h5") 初始权重的格式是浮点数的数组,与模型对应。使用联邦学习训练出来的结果result_1可以作为初始权重,样例如下: -0.23300957679748535,0.7804553508758545,0.0064492723904550076,0.5866460800170898,0.676144003868103,-0.7883696556091309,0.5472091436386108,-0.20961782336235046,0.58524489402771,-0.5079598426818848,-0.47474920749664307,-0.3519996106624603,-0.10822880268096924,-0.5457949042320251,-0.28117161989212036,-0.7369481325149536,-0.04728877171874046,0.003856887575238943,0.051739662885665894,0.033792052417993546,-0.31878742575645447,0.7511205673217773,0.3158722519874573,-0.7290999293327332,0.7187696695327759,0.09846954792737961,-0.06735057383775711,0.7165604829788208,-0.730293869972229,0.4473201036453247,-0.27151209115982056,-0.6971480846405029,0.7360773086547852,0.819558322429657,0.4984433054924011,0.05300116539001465,-0.6597640514373779,0.7849202156066895,0.6896201372146606,0.11731931567192078,-0.5380218029022217,0.18895208835601807,-0.18693888187408447,0.357051283121109,0.05440644919872284,0.042556408792734146,-0.04341210797429085,0.0,-0.04367709159851074,-0.031455427408218384,0.24731603264808655,-0.062861368060112,-0.4265706539154053,0.32981523871421814,-0.021271884441375732,0.15228557586669922,0.1818728893995285,0.4162319302558899,-0.22432318329811096,0.7156463861465454,-0.13709741830825806,0.7237883806228638,-0.5489991903305054,0.47034209966659546,-0.04692812263965607,0.7690137028694153,0.40263476967811584,-0.4405142068862915,0.016018997877836227,-0.04845477640628815,0.037553105503320694 编写训练脚本(作业发起方) 作业发起方还需要编写联邦学习训练脚本,其中需要用户自行实现读取数据、训练模型、评估模型、获取评估指标的逻辑。计算节点会将数据集配置文件中的path属性作为参数传递给训练脚本。 JobParam属性如下: class JobParam: """训练脚本参数 """ # 作业id job_id = '' # 当前轮数 round = 0 # 迭代次数 epoch = 0 # 模型文件路径 model_file = '' # 数据集路径 dataset_path = '' # 是否仅做评估 eval_only = False # 权重文件 weights_file = '' # 输出路径 output = '' # 其他参数json字符串 param = '' 鸢尾花的训练脚本iris_train.py样例如下: # -*- coding: utf-8 -*- import getopt import sys import keras import horizontal.horizontallearning as hl def train(): # 解析命令行输入 jobParam = JobParam() jobParam.parse_from_command_line() job_type = 'evaluation' if jobParam.eval_only else 'training' print(f"Starting round {jobParam.round} {job_type}") # 加载模型,设置初始权重参数 model = keras.models.load_model(jobParam.model_file) hl.set_model_weights(model, jobParam.weights_file) # 加载数据、训练、评估 -- 用户自己实现 print(f"Load data {jobParam.dataset_path}") train_x, test_x, train_y, test_y, class_dict = load_data(jobParam.dataset_path) if not jobParam.eval_only: b_size = 1 model.fit(train_x, train_y, batch_size=b_size, epochs=jobParam.epoch, shuffle=True, verbose=1) print(f"Training job [{jobParam.job_id}] finished") eval = model.evaluate(test_x, test_y, verbose=0) print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" % (eval[0], eval[1] * 100)) # 结果以json格式保存 -- 用户读取评估指标 result = {} result['loss'] = eval[0] result['accuracy'] = eval[1] # 生成结果文件 hl.save_train_result(jobParam, model, result) # 读取 CS V数据集,并拆分为训练集和测试集 # 该函数的传入参数为CSV_FILE_PATH: csv文件路径 def load_data(CSV_FILE_PATH): import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # 读取目录数据集,读取目录下所有CSV文件 if os.path.isdir(CSV_FILE_PATH): print(f'read file folder [{CSV_FILE_PATH}]') all_csv_path = glob.glob(os.path.join(CSV_FILE_PATH, '*.csv')) all_csv_path.sort() csv_list = [] for csv_path in all_csv_path: csv_list.append(pd.read_csv(csv_path)) IRIS = pd.concat(csv_list) # 读取CSV文件 else: IRIS = pd.read_csv(CSV_FILE_PATH) target_var = 'class' # 目标变量 # 数据集的特征 features = list(IRIS.columns) features.remove(target_var) # 目标变量的类别 Class = IRIS[target_var].unique() # 目标变量的类别字典 Class_dict = dict(zip(Class, range(len(Class)))) # 增加一列target, 将目标变量进行编码 IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x]) # 对目标变量进行0-1编码(One-hot Encoding) lb = LabelBinarizer() lb.fit(list(Class_dict.values())) transformed_labels = lb.transform(IRIS['target']) y_bin_labels = [] # 对多分类进行0-1编码的变量 for i in range(transformed_labels.shape[1]): y_bin_labels.append('y' + str(i)) IRIS['y' + str(i)] = transformed_labels[:, i] # 将数据集分为训练集和测试集 train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], train_size=0.7, test_size=0.3, random_state=0) return train_x, test_x, train_y, test_y, Class_dict class JobParam: """训练脚本参数 """ # required parameters job_id = '' round = 0 epoch = 0 model_file = '' dataset_path = '' eval_only = False # optional parameters weights_file = '' output = '' param = '' def parse_from_command_line(self): """从命令行中解析作业参数 """ opts, args = getopt.getopt(sys.argv[1:], 'hn:w:', ['round=', 'epoch=', 'model_file=', 'eval_only', 'dataset_path=', 'weights_file=', 'output=', 'param=', 'job_id=']) for key, value in opts: if key in ['--round']: self.round = int(value) if key in ['--epoch']: self.epoch = int(value) if key in ['--model_file']: self.model_file = value if key in ['--eval_only']: self.eval_only = True if key in ['--dataset_path']: self.dataset_path = value if key in ['--weights_file']: self.weights_file = value if key in ['--output']: self.output = value if key in ['--param']: self.param = value if key in ['--job_id']: self.job_id = value if __name__ == '__main__': train()
  • kubectl访问集群配置 本步骤需要在节点机器,对kubectl进行集群访问配置。 首先进入已创建的CCE集群控制版面中。根据图2的步骤进行操作,单击kubectl配置时,会弹出图3步骤页面。 图2 配置中心 根据图3,按步骤进行:判断是否安装 kubectl、下载kubectl配置文件、在机器中安装和配置kubectl。 图3 kubectl访问集群配置 在节点机器中,输入命令,查看Kubernetes集群信息。如果显示如图4的内容,则配置成功。 kubectl cluster-info 图4 查看Kubernetes集群信息正确弹出内容
  • 步骤三:启动容器镜像 启动容器镜像前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。启动容器命令如下。 export work_dir="自定义挂载的工作目录" #容器内挂载的目录,例如/home/ma-user/ws export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --cpus 192 \ --memory 1000g \ --shm-size 200g \ --net=host \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如llamafactory。 -v ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载/home/ma-user目录,此目录为ma-user用户家目录。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 ${image_name} 为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。 #统一文件权限 chmod -R 777 ${work_dir} # ${work_dir}:/home/ma-user/ws 宿主机代码和数据目录 #例如: chmod -R 777 /home/ma-user/ws 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec -it ${container_name} bash 使用ma-user用户安装依赖包。 #进入scripts目录 cd /home/ma-user/ws/llm_train/LLaMAFactory #执行安装命令,安装依赖包及/LLaMAFactory代码包 sh install.sh
  • 步骤一:检查环境 SSH登录机器后,检查NPU设备检查。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装NPU设备和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
  • 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_3_ascend:pytorch_2.3.1-cann_8.0.rc3-py_3.10-hce_2.0.2409-aarch64-snt9b-20241114095658-d7e26d8 表2 模型镜像版本 模型 版本 CANN cann_8.0.RC3 驱动 23.0.6 PyTorch 2.3.0
  • 管理工作空间配额 工作空间创建成功后,可以查看配额信息或修改配额值。 在ModelArts管理控制台的左侧导航栏中,选择“工作空间”进入工作空间列表。 在工作空间列表,单击操作列的“配额管理”进入工作空间详情页。 在配额信息页面可以查看工作空间设置的配额值、已用的配额、最后修改时间等配额信息。 单击配额信息右侧的“修改配额”可以修改配额值。配置值的配置说明请参见表2。 表2 配额信息 配额名称 配额值说明 单位 自动学习(预测分析)训练时长 默认无限制,支持设置1~60000。 分钟 自动学习(图像分类、物体检测、声音分类)训练时长 默认无限制,支持设置1~60000。 分钟 训练作业GPU规格训练时长(单张Pnt1单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练时长(单核单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 可视化作业使用时长 默认无限制,支持设置1~60000。 分钟 开发环境CPU规格使用时长(单核为统计基础单元) 默认无限制,支持设置1~60000。 分钟 开发环境GPU规格使用时长(单张Pnt1为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务CPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 推理服务GPU规格使用时长(单节点为统计基础单元) 默认无限制,支持设置1~60000。 分钟 训练作业CPU规格训练核数 默认无限制,支持设置1~10000。 核 训练作业GPU规格训练卡数 默认无限制,支持设置1~1000。 卡 训练作业 RAM 规格训练内存大小 默认无限制,支持设置1~100000。 GB 智能标注GPU规格使用时长 默认无限制,支持设置1~60000。 分钟 工作空间的配额值修改完成后,单击“提交修改”,当“配额值”数据刷新表示修改成功。
  • 删除工作空间 当不需要使用工作空间时,支持删除工作空间。工作空间删除后会默认清理该工作空间下所有资源。其中,默认工作空间“default”不支持删除。 删除操作无法恢复,请谨慎操作。 在ModelArts管理控制台的左侧导航栏中,选择“工作空间”进入工作空间列表。 在工作空间列表,单击操作列的“删除”,在删除工作空间弹窗中确认待删除的工作空间信息以及该工作空间下将被一起删除的资源,确认无误后,输入“DELETE”,单击“确定”,工作空间的状态变为“删除中”,待资源清理完成,该工作空间会从列表删除。
  • 背景信息 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 基于工作空间可以实现资源逻辑隔离、资源配额管理、细粒度鉴权和资源清理能力。工作空间组件可以将ModelArts各类资源整合,以工作空间体现给企业项目管理服务。 工作空间支持3种访问控制: PUBLIC:租户(主账号和所有子账号)内部公开访问。 PRIVATE:仅创建者和主账号可访问。 INTERNAL:创建者、主账号、指定 IAM 子账号可访问当授权类型为INTERNAL时需要指定可访问的子账号的账号名,可选择多个。 每个账号每个IAM项目都会分配1个默认工作空间,默认工作空间的访问控制为PUBLIC。 通过工作空间的访问控制能力,可限制仅允许部分人访问对应的工作空间。通过此功能可实现类似如下场景: 教育场景:老师可给每个学生分配1个INTERNAL的工作空间并且限制该工作空间被指定学生访问,这样可使得学生可独立完成在ModelArts上的实验。 企业场景:管理者可创建用于生产任务的工作空间并限制仅让运维人员使用,用于日常调试的工作空间并限制仅让开发人员使用。通过这种方式让不同的企业角色只能在指定工作空间下使用资源。
  • 创建工作空间 登录ModelArts管理控制台。 在左侧导航栏中,选择“工作空间”进入工作空间列表。 单击“创建工作空间”,进入创建页面。 表1 创建工作空间 参数名称 说明 工作空间名称 必填,工作空间的名称。 支持4~64位可见字符,名称可以包含字母、中文、数字、中划线(-)或下划线(_)。 描述 工作空间的简介。支持0~256位字符。 企业项目 必填,选择绑定的企业项目。当没有合适的企业项目时,可以单击“新建企业项目”跳转到企业项目管理页面,创建新的企业项目再绑定。 企业项目是一种云资源管理方式,企业项目管理服务提供统一的云资源按项目管理,以及项目内的资源管理、成员管理。 授权类型 必填,选择工作空间的访问权限。 “PUBLIC”:租户(主账号和所有子账号)内部公开访问。 “PRIVATE”:仅创建者和主账号可访问。 “INTERNAL”:创建者、主账号、指定的子账号可访问。当授权类型为INTERNAL时,需要配置“授权对象类型”和“授权对象”指定可访问的子账号。 当“授权对象类型”选择“IAM子用户”时,“授权对象”选择指定的IAM子用户,可选择多个。 当“授权对象类型”选择“联邦用户”时,“授权对象”输入联邦用户的用户名或用户ID,支持配置多个。 当“授权对象类型”选择“委托用户”时,“授权对象”选择委托名称,可选择多个。 工作空间参数配置完成后,单击“立即创建”完成创建任务。
  • 操作步骤 登录华为云管理控制台,鼠标指向页面右上角的用户名,在下拉列表中单击“我的凭证”。 图1 我的凭证入口 在“我的凭证”页面中选择“访问密钥”页签。单击“新增访问密钥”,按操作指引获取认证账号的AK/SK,请妥善保管AK/SK信息。 图2 访问密钥 每个用户仅允许新增两个访问密钥。 为保证访问密钥的安全,访问密钥仅在初次生成时自动下载,后续不可再次通过管理控制台页面获取。请在生成后妥善保管。
  • GaussDB (DWS)委托权限(旧) 旧的委托权限依赖场景说明如下表所示: 表2 委托及权限使用说明 委托名 委托权限 使用场景说明 DWSAccessLTS LTS FullAccess LTS日志收集,上报日志到LTS服务。 DWSAccessOBS OBS Administrator 审计日志转储,上报审计日志数据到OBS桶。 DWSAccessKMS KMS Administrator KMS加密集群,查询和轮转密钥。 DWSAccessVPC Server Administrator 节点故障场景下,EIP从故障节点自动迁移到正常节点。 DWSAccessDWS Tenant Administrator 存算分离场景下,自动增删计划定时扩缩只读逻辑集群。 缩容场景下,清理用户网卡、配置安全组规则。 节点故障场景下,ELB添加和删除监听器实例。