云服务器内容精选
-
数据生成算子(StyleGan算子) 图像生成利用Gan网络依据已知的数据集生成新的数据集。Gan是一个包含生成器和判别器的网络,生成器从潜在空间中随机取样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别器的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。而生成网络则要尽可能地欺骗判别网络。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。训练中获得的生成器网络可用于生成与输入图片相似的图片,用作新的数据集参与训练。基于Gan网络生成新的数据集不会生成相应的标签。图像生成过程不会改动原始数据,新生成的图片或xml文件保存在指定的输出路径下。 基于StyleGan2用于在数据集较小的情形下,随机生成相似图像。StyleGAN提出了一个新的生成器结构,能够控制所生成图像的高层级属性(high-level attributes),如发型、雀斑等;并且生成的图像在一些评价标准上得分更好。而本算法又增加了数据增强算法,可以在较少样本的情况下也能生成较好的新样本,但是样本数尽量在70张以上,样本太少生成出来的新图像不会有太多的样式。 图4 StyleGan算子 表2 StyleGan算子高级参数 参数名 默认值 参数说明 resolution 256 生成正方形图像的高宽,大小需要是2的次方。 batch-size 8 批量训练样本个数。 total-kimg 300 总共训练的图像数量为total_kimg*1000。 generate_num 300 生成的图像数量,如果是多个类的,则为每类生成的数量。 predict False 是否进行推理预测,默认为False。如果设置True,需要在resume参数设置已经训练完成的模型的obs路径。 resume empty 如果predict设置为True,需要填写Tensorflow模型文件的obs路径用于推理预测。当前仅支持“.pb”格式的模型。示例:obs://xxx/xxxx.pb。 默认值为empty。 do_validation True 是否做数据校验,默认为True,表示数据生成前需要进行数据校验,否则只进行数据生成。 输入要求 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉框中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,图像生成算子不需要标注信息,输入支持单层级或双层级目录,存放结构支持“单层级”或“双层级”模式。 单层级目录结构如下所示: image_folder----0001.jpg ----0002.jpg ----0003.jpg ... ----1000.jpg 双层级目录结构如下所示: image_folder----sub_folder_1----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg ----sub_folder_2----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg ... ----sub_folder_100----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg 输出说明 输出目录的结构如下所示。其中“model”文件夹存放用于推理的“frozen pb”模型,“samples”文件夹存放训练过程中输出图像,“Data”文件夹存放训练模型生成的图像。 train_url----model----CYcleGan_epoch_10.pb ----CYcleGan_epoch_20.pb ... ----CYcleGan_epoch_1000.pb ----samples----0000_0.jpg ----0000_1.jpg ... ----0100_15.jpg ----Data----CYcleGan_0_0.jpg ----CYcleGan_0_1.jpg ... ----CYcleGan_16_8.jpg ----output_0.manifest 其中manifest文件内容示例如下所示。 {"id": "xss","source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg","usage": "train", "annotation": [{"name": "Cat", "type": "modelarts/image_classification"}]}
-
数据扩增算子说明 数据扩增主要用于训练数据集不足或需要仿真的场景,能通过对已标注的数据集做变换操作来增加训练图片的数量,同时会生成相应的标签。在深度学习领域,增强有重要的意义,能提升模型的泛化能力,增加抗扰动的能力。数据扩增过程不会改动原始数据,扩增后的图片或xml文件保存在指定的输出路径下。 ModelArts提供以下数据扩增算子: 表1 数据扩增算子介绍 算子 算子说明 高级 AddNoise 添加噪声,模拟常见采集设备在采集图片过程中可能会产生的噪声。 noise_type:添加噪声的分布类型,Gauss为高斯噪声,Laplace为拉普拉斯噪声,Poisson是泊松噪声,Impulse是脉冲噪声,SaltAndPepper为椒盐噪声。默认值为Gauss loc:噪声分布的均值,仅在Gauss和Laplace生效。默认值为0 scale:噪声分布的标准差,仅在Gauss和Laplance生效。默认值为1 lam:泊松分布的lambda系数,仅在Poisson有效。默认值为2 p:对于每个像素点,出现脉冲噪声或椒盐噪声的概率,仅在Impulse和SaltAndPepper有效。默认值为0.01 do_validation:数据扩增前是否进行数据校验。默认值为True。 Blur 模糊,使用滤波器对图像进行滤波操作,有时用于模拟成像设备的成像。 blur_type:可选Gauss和Average两种模式,分别为高斯和均值滤波。默认值为Gauss do_validation:数据扩增前是否进行数据校验。默认值为True。 Crop 图片裁剪,随机裁剪图片的一部分作为新的图片。 crop_percent_min:各边裁剪占比的随机取值范围的最小值。默认值为0.0 crop_percent_max:各边裁剪占比的随机取值范围的最大值。默认值为0.2 do_validation:数据扩增前是否进行数据校验。默认值为True。 CutOut 随机擦除,在深度学习中常用的方法,用于模拟物体被障碍物遮挡。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Flip 翻转,沿图片水平轴或竖直轴做翻转,是非常常见的增强方法。 lr_ud:选择翻转的方向,lr为水平翻转,ud为竖直翻转。默认值为lr flip_p:做翻转操作的概率。默认值为1。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Grayscale 图片灰度化,将三通道的彩色图像转换到三通道的灰度图像。 do_validation:数据扩增前是否进行数据校验。默认值为True。 HistogramEqual 直方图均衡化,多半是使用于让图片的视觉效果更加好,在某些场景下会使用。 do_validation:数据扩增前是否进行数据校验。默认值为True。 LightArithmetic 亮度增强 ,对亮度空间做线性增强操作。 do_validation:数据扩增前是否进行数据校验。默认值为True。 LightContrast 亮度对比度增强,使用一定的非线性函数改变亮度空间的亮度值。 func:默认值为gamma gamma为常见方法伽马矫正,公式为255*((v/255)**gamma)') sigmoid为函数为S型曲线,公式为255*1/(1+exp(gain*(cutoff-I_ij/255)))') log为对数函数,公式为255*gain*log_2(1+v/255) linear为线性函数,公式为127 + alpha*(v-127)') do_validation:数据扩增前是否进行数据校验。默认值为True。 MotionBlur 运动模糊,模拟物体运动时产生的残影现象。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Padding 图片填充,在边缘添加黑色的边。 px_top:图像顶端增加的像素行数。默认值为1 px_right:图像右侧增加的像素行数。默认值为1 px_left:图像左侧增加的像素行数。默认值为1 px_bottom:图像底侧增加的像素行数。默认值为1 do_validation:数据扩增前是否进行数据校验。默认值为True。 Resize 调整图片大小。 height:变换后的图片高度。默认值224 width:变换后的图片宽度。默认值224 do_validation:数据扩增前是否进行数据校验。默认值为True。 Rotate 旋转,将图像围绕中心点旋转的操作,操作完成之后保持图片原本的形状不变,不足的部分用黑色填充。 angle_min:旋转角度随机取值范围的最小值,每张图片会从范围中随机取值作为自己的参数。默认值为90° angle_max:旋转角度随机取值范围的最大值,每张图片会从范围中随机取值作为自己的参数。默认值为-90° do_validation:数据扩增前是否进行数据校验。默认值为True。 Saturation 色度饱和度增强,对图片的HSV中的H和S空间做线性的变化,改变图片的色度和饱和度。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Scale 图片缩放,将图片的长或宽随机缩放到一定倍数。 scaleXY:缩放方向,X为水平,Y为垂直。默认值为X scale_min:缩放比例随机取值范围的最小值。默认为0.5 scale_max:缩放比例随机取值范围的最大值。默认值为1.5 do_validation:数据扩增前是否进行数据校验。默认值为True。 Sharpen 图像锐化,用于将边缘清晰化,让物体边缘更加明显。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Shear 图片错切,一般用于图片的几何变换,通过线性函数将像素点进行映射。 shearXY:错切方向,X为水平,Y为竖直。默认值为X shear_min:错切角度随机取值范围的最小值。默认值为-30 shear_max:错切角度随机取值范围的最大值。默认值为30 do_validation:数据扩增前是否进行数据校验。默认值为True。 Translate 图片平移,将图片整体向X轴或Y轴平移,超出原图部分舍弃,丢失部分用黑色填充。 translateXY:平移的方向,X为水平,Y为竖直。默认值为X do_validation:数据扩增前是否进行数据校验。默认值为True。 Weather 添加天气,模拟天气效果。 weather_mode:添加天气的模式,默认值为Rain。 Rain:下雨 Fog:雾 Snow:雪 Clouds:云 do_validation:数据扩增前是否进行数据校验。默认值为True。 输入要求 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉框中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,存放结构支持“包含图片和标注信息”模式。 “包含图片和标注信息”,根据不同场景类型,结构不同。 图像分类场景,其目录结构如下所示。如下目录结构,仅支持单标签场景。 input_path/ --label1/ ----1.jpg --label2/ ----2.jpg --../ 物体检测场景,其目录结构如下所示。支持jpg、jpeg、png、bmp格式的图片,xml为标准的PACAL VOC格式标注文件。 input_path/ --1.jpg --1.xml --2.jpg --2.xml ... 输出说明 由于算法中有些操作将会舍弃一些数据,输出文件夹里可能不包含全量数据集。例如,“Rotate”会舍弃标注框超出原始图片边界的图片。 输出目录结构如下所示。其中“Data”文件夹用于存放新生成的图片和标注信息,“manifest”文件存储文件夹中图片的结构,可直接导入到数据集中。 |----data_url |----Data |----xxx.jpg |----xxx.xml(xxx.txt) |----output.manifest 其中manifest文件内容示例如下所示。 {"id": "xss","source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg","usage": "train", "annotation": [{"name": "Cat", "type": "modelarts/image_classification"}]}
-
数据域迁移算子(CycleGan算子) 基于CycleGAN用于生成域迁移的图像,即将一类图片转换成另一类图片,把X空间中的样本转换成Y空间中的样本。CycleGAN可以利用非成对数据进行训练。模型训练时运行支持两个输入,分别代表数据的原域和目标域,在训练结束时会生成所有原域向目标域迁移的图像。 图5 CycleGan算子 表3 CycleGan算子高级参数 参数名 默认值 参数说明 do_validation True 是否进行数据校验,默认为True,表示数据生成前需要进行数据校验,否则只进行数据生成。 image_channel 3 生成图像的通道数。 image_height 256 图像相关参数:生成图像的高,大小需要是2的次方。 image_width 256 图像相关参数:生成图像的宽,大小需要是2的次方 batch_size 1 训练相关参数:批量训练样本个数。 max_epoch 100 训练相关参数:训练遍历数据集次数。 g_learning_rate 0.0001 训练相关参数:生成器训练学习率。 d_learning_rate 0.0001 训练相关参数:判别器训练学习率。 log_frequency 5 训练相关参数:日志打印频率(按step计数)。 save_frequency 5 训练相关参数:模型保存频率(按epoch计数)。 predict False 是否进行推理预测,默认为False。如果设置True,需要在resume参数设置已经训练完成的模型的obs路径。 resume empty 如果predict设置为True,需要填写Tensorflow模型文件的obs路径用于推理预测。当前仅支持“.pb”格式的模型。示例:obs://xxx/xxxx.pb。 默认值为empty。 输入说明 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉框中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,图像生成算子不需要标注信息,输入支持单层级或双层级目录,存放结构支持“单层级”或“双层级”模式。 单层级目录结构如下所示: image_folder----0001.jpg ----0002.jpg ----0003.jpg ... ----1000.jpg 双层级目录结构如下所示: image_folder----sub_folder_1----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg ----sub_folder_2----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg ... ----sub_folder_100----0001.jpg ----0002.jpg ----0003.jpg ... ----0500.jpg 输出说明 输出目录的结构如下所示。其中“model”文件夹存放用于推理的“frozen pb”模型,“samples”文件夹存放训练过程中输出图像,“Data”文件夹存放训练模型生成的图像。 train_url----model----CYcleGan_epoch_10.pb ----CYcleGan_epoch_20.pb ... ----CYcleGan_epoch_1000.pb ----samples----0000_0.jpg ----0000_1.jpg ... ----0100_15.jpg ----Data----CYcleGan_0_0.jpg ----CYcleGan_0_1.jpg ... ----CYcleGan_16_8.jpg ----output_0.manifest 其中manifest文件内容示例如下所示。 {"id": "xss","source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg","usage": "train", "annotation": [{"name": "Cat", "type": "modelarts/image_classification"}]}
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格