云服务器内容精选
-
监控插件安装步骤 当前账户需要给 CES 授权委托,请参考创建用户并授权使用 云监控服务 。 当前还不支持在CES界面直接一键安装监控,需要登录到服务器上执行以下命令安装配置Agent。其它region的安装请参考单台主机下安装Agent。 cd /usr/local && curl -k -O https://obs.cn-north-4.myhuaweicloud.com/uniagent-cn-north-4/script/agent_install.sh && bash agent_install.sh 安装成功的标志如下: 图1 安装成功提示 在CES界面查看具体的监控项,加速卡类的监控项必须在主机安装加速卡驱动后才会有相关指标。 图2 监控界面 至此,监控插件已经安装完成,相关指标的采集可以在UI界面直接查看或者根据指标值配置相关告警。
-
裸金属服务器监控介绍 监控概述请参考BMS官方文档。除文档所列支持的镜像之外,目前还支持Ubuntu20.04。 监控指标采样周期1分钟。当前监控指标项已经包含CPU、内存、磁盘、网络。在主机上安装加速卡驱动后,可以自动采集的如下指标: 表1 指标列表 指标英文名 指标中文名 说明 单位 维度 gpu_status gpu健康状态。 BMS上GPU健康状态,是一个综合指标,0代表健康,1代表亚健康,2代表故障。 - instance_id,gpu gpu_utilization gpu使用率。 该GPU的算力使用率。 % instance_id,gpu memory_utilization 显存使用率。 该GPU的显存使用率。 % instance_id,gpu gpu_performance gpu性能状态。 该GPU的性能状态。 - instance_id,gpu encoder_utilization 编码使用率。 该GPU的编码能力使用率。 % instance_id,gpu decoder_utilization 解码使用率。 该GPU的解码能力使用率。 % instance_id,gpu volatile_correctable 短期可纠正ECC错误数量。 该GPU重置以来可纠正的ECC错误数量,每次重置后归0。 个 instance_id,gpu volatile_uncorrectable 短期不可纠正ECC错误数量。 该GPU重置以来不可纠正的ECC错误数量,每次重置后归0。 个 instance_id,gpu aggregate_correctable 累计可纠正ECC错误数量。 该GPU累计的可纠正ECC错误数量。 个 instance_id,gpu aggregate_uncorrectable 累计不可纠正ECC错误数量。 该GPU累计的不可纠正ECC错误数量。 个 instance_id,gpu retired_page_single_bit retired page single bit错误数量。 retired page single bit错误数量,表示当前卡隔离的单比特页数。 个 instance_id,gpu retired_page_double_bit retired page double bit错误数量。 retired page double bit错误数量,表示当前卡隔离的双比特页的数量。 个 instance_id,gpu
-
背景信息 Megatron-Deepspeed Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于 自然语言处理 任务,如文本生成、 机器翻译 和对话系统等。 DeepSpeed是NVIDIA开源的加速深度学习训练的库。它针对大规模的模型和分布式训练进行了优化,可以显著提高训练速度和效率。DeepSpeed提供了各种技术和优化策略,包括分布式梯度下降、模型并行化、梯度累积和动态精度缩放等。它还支持优化大模型的内存使用和计算资源分配。 GPT2 GPT2(Generative Pre-trained Transformer 2),是OpenAI组织在2018年于GPT模型的基础上发布的新预训练模型,是一个基于Transformer且非常庞大的语言模型。它在大量数据集上进行了训练,直接运行一个预训练好的GPT-2模型:给定一个预定好的起始单词或者句子,可以让它自行地随机生成后续的文本。
-
环境准备 在华为云ModelArts Server预购相关超强算力的GPU裸金属服务器,并选择AIGC场景通用的镜像,完成使用Megatron-Deepspeed训练GPT2模型。本最佳实践使用以下镜像和规格: 镜像选择:Ubuntu 20.04 x86 64bit SDI3 for Ant8 BareMetal with RoCE and NVIDIA-525 CUDA-12.0。 裸金属规格选择: GP Ant8,包含8张GPU卡以及8张RoCE网卡。 关于Ant8裸金属服务器的购买,可以在华为云官网提工单至ModelArts云服务, 完成资源的申请。
-
步骤3 单机多卡训练 和单机单卡训练相比, 单机多卡训练只需在预训练脚本中设置多卡参数相关即可, 其余步骤与单机单卡相同。 当前选择GPU裸金属服务器是8卡, 因此需要调整如下参数: GPUS_PER_NODE=8 调整全局批处理大小(global batch size)、微批处理大小(micro batch size)、数据并行大小(data_parallel_size)参数。三者的关系为:“global_batch_size”可被“micro_batch_size * data_parallel_size”整除。 本文设置的参数值如下: global_batch_size = 64 micro_batch_size = 4 data_parallel_size = 8 单机多卡完整的预训练脚本内容如下: #! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=8 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 64 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16 训练时监控的GPU利用率如下: 图7 GPU利用率
-
步骤1 安装模型 安装Megatron-Deepspeed框架。 使用root用户SSH的方式登录GPU裸金属服务器,登录方式在华为云购买页面可以获取。 拉取pytorch镜像,可以选择常用的镜像源进行下载。 docker pull nvcr.io/nvidia/pytorch:21.10-py3 启动容器。 docker run -d -t --network=host --gpus all --privileged --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --name megatron-deepspeed -v /etc/localtime:/etc/localtime -v /root/.ssh:/root/.ssh nvcr.io/nvidia/pytorch:21.10-py3 执行以下命令,进入容器终端。 docker exec -it megatron-deepspeed bash 下载Megatron-DeepSpeed框架。 git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed 若git clone失败,可以尝试先下载至本地,然后拷贝至服务器中,在docker cp至容器中。 安装Megatron-DeepSpeed框架。 cd Megatron-DeepSpeed pip install -r requirements.txt -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com pip install mpi4py -i http://mirrors.myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com 修改测试代码,注释掉以下文件的断言所在行。 vim /workspace/Megatron-DeepSpeed/megatron/model/fused_softmax.py +191 在“assert mask is None, "Mask is silently ignored due to the use of a custom kernel"”前加“#”,即: # assert mask is None, "Mask is silently ignored due to the use of a custom kernel" 数据集下载和预处理。 本实践中选择使用1GB 79K-record的JSON格式的OSCAR数据集。 下载数据集。 wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt 解压数据集。 xz -d oscar-1GB.jsonl.xz 预处理数据。 python3 tools/preprocess_data.py \ --input oscar-1GB.jsonl \ --output-prefix meg-gpt2 \ --vocab gpt2-vocab.json \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file gpt2-merges.txt \ --append-eod \ --workers 8 若发生如下“np.float”报错,按照报错提示修改为“float”即可。 图1 预处理数据报错 数据预处理完成标识。 图2 数据预处理完成 新建data目录并移动处理好的数据。 mkdir data mv meg-gpt2* ./data mv gpt2* ./data
-
步骤2 单机单卡训练 本小节使用上文的服务器环境和安装好的模型, 使用GP Ant8裸金属服务器, 完成单机单卡GPT-2 MEDIUM模型的训练。 创建预训练脚本文件。 执行以下命令,创建预训练脚本文件。 vim pretrain_gpt2.sh 在文件中添加以下信息。 #! /bin/bash # Runs the "345M" parameter model GPUS_PER_NODE=1 # Change for multinode config MASTER_ADDR=localhost MASTER_PORT=6000 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DATA_PATH=data/meg-gpt2_text_document CHECKPOINT_PATH=checkpoints/gpt2 DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" python -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --micro-batch-size 4 \ --global-batch-size 8 \ --seq-length 1024 \ --max-position-embeddings 1024 \ --train-iters 5000 \ --lr-decay-iters 320000 \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --vocab-file data/gpt2-vocab.json \ --merge-file data/gpt2-merges.txt \ --data-impl mmap \ --split 949,50,1 \ --distributed-backend nccl \ --lr 0.00015 \ --lr-decay-style cosine \ --min-lr 1.0e-5 \ --weight-decay 1e-2 \ --clip-grad 1.0 \ --lr-warmup-fraction .01 \ --checkpoint-activations \ --log-interval 10 \ --save-interval 500 \ --eval-interval 100 \ --eval-iters 10 \ --fp16 开始训练。 本文是单机单卡训练,使用预训练脚本参数控制: GPUS_PER_NODE=1 NNODES=1 NODE_RANK=0 执行以下命令,开始预训练。 nohup sh ./pretrain_gpt2.sh & 图3 开始预训练 实时查看训练日志,监控程序。 tail -f nohup.out 如果显示如下信息, 表示模型训练完成。 图4 模型训练完成 在训练过程中观察单GPU卡的利用率,如下: 图5 GPU利用率 查看生成的模型checkpoint。 本示例生成的模型checkpoint路径设置在“/workspace/Megatron-DeepSpeed/checkpoints/gpt2”。 ll ./checkpoints/gpt2 图6 模型checkpoint
-
场景描述 Lite Server为一台弹性裸金属服务器,您可以使用BMS服务提供的切换操作系统功能,对Lite Server资源操作系统进行切换。本文介绍以下三种切换操作系统的方式: 在BMS控制台切换操作系统 使用BMS Go SDK的方式切换操作系统 使用Python封装API的方式切换操作系统 切换操作系统需满足以下条件: 当前裸金属服务器状态为停止状态。 目标操作系统必须是该Region下的IMS公共镜像或者私有共享镜像。
-
使用BMS Go SDK的方式切换操作系统 以下为BMS使用Go语言通过SDK方式切换操作系统的示例代码。 package main import ( "fmt" "os" "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth/basic" bms "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1" "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1/model" region "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/bms/v1/region" ) func main() { // 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; // 本示例以ak和sk保存在环境变量中来实现身份验证为例,运行本示例前请先在本地环境中设置环境变量HUAWEICLOUD_SDK_AK和HUAWEICLOUD_SDK_SK。 ak := os.Getenv("HUAWEICLOUD_SDK_AK") sk := os.Getenv("HUAWEICLOUD_SDK_SK") auth := basic.NewCredentialsBuilder(). WithAk(ak). WithSk(sk). Build() client := bms.NewBmsClient( bms.BmsClientBuilder(). WithRegion(region.ValueOf("cn-north-4")). WithCredential(auth). Build()) keyname := "KeyPair-name" userdata := "aGVsbG8gd29ybGQsIHdlbGNvbWUgdG8gam9pbiB0aGUgY29uZmVyZW5jZQ==" request := &model.ChangeBaremetalServerOsRequest{ ServerId: "****input your bms instance id****", Body: &model.OsChangeReq{ OsChange: &model.OsChange{ Keyname: &keyname, Imageid: "****input your ims image id****", Metadata: &model.MetadataInstall{ UserData: &userdata, }, }, }, } response, err := client.ChangeBaremetalServerOs(request) if err == nil { fmt.Printf("%+v\n", response) } else { fmt.Println(err) } }
-
Python封装API方式切换操作系统 以下为BMS使用Python语言通过API方式切换操作系统的示例代码。 # -*- coding: UTF-8 -*- import requests import json import time import requests.packages.urllib3.exceptions from urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) class ServerOperation(object): ################################ IAM 认证API################################################# def __init__(self, account, password, region_name, username=None, project_id=None): """ :param username: if IAM user,here is small user, else big user :param account: account big big user :param password: account :param region_name: """ self.account = account self.username = username self.password = password self.region_name = region_name self.project_id = project_id self.ma_endpoint = "https://modelarts.{}.myhuaweicloud.com".format(region_name) self.service_endpoint = "https://bms.{}.myhuaweicloud.com".format(region_name) self.iam_endpoint = "https://iam.{}.myhuaweicloud.com".format(region_name) self.headers = {"Content-Type": "application/json", "X-Auth-Token": self.get_project_token_by_account(self.iam_endpoint)} def get_project_token_by_account(self, iam_endpoint): body = { "auth": { "identity": { "methods": [ "password" ], "password": { "user": { "name": self.username if self.username else self.account, "password": self.password, "domain": { "name": self.account } } } }, "scope": { "project": { "name": self.region_name } } } } headers = { "Content-Type": "application/json" } import json url = iam_endpoint + "/v3/auth/tokens" response = requests.post(url, headers=headers, data=json.dumps(body), verify=True) token = (response.headers['X-Subject-Token']) return token def change_os(self, server_id): url = "{}/v1/{}/baremetalservers/{}/changeos".format(self.service_endpoint, self.project_id, server_id) print(url) body = { "os-change": { "adminpass": "@Server", "imageid": "40d88eea-6e41-418a-ad6c-c177fe1876b8" } } response = requests.post(url, headers=self.headers, data=json.dumps(body), verify=False) print(json.dumps(response.json(), indent=1)) return response.json() if __name__ == '__main__': # 调用API前置准备,初始化认证鉴权信息 server = ServerOperation(username="xxx", account="xxx", password="xxx", project_id="xxx", region_name="cn-north-4") server.change_os(server_id="0c84bb62-35bd-4e1c-ba08-a3a686bc5097")
-
在BMS控制台切换操作系统 获取操作系统镜像。 由华为云官方提供给客户操作系统镜像,在IMS 镜像服务 的共享镜像处进行接收即可,参考如下图操作。 图1 共享镜像 切换操作系统。 对Lite Server资源对应的裸金属服务器,对其进行关机操作,完成关机后,才可以执行切换操作系统动作。 在裸金属服务的更多选项中,点击切换操作系统,如下图所示。 图2 选择操作系统 在切换操作系统界面,选择上一步接收到的共享镜像即可。 图3 选择镜像
-
Lite Server资源配置流程 在开通Lite Server资源后,需要完成相关配置才能使用,配置流程如下图所示。 图1 Lite Server资源配置流程图 表1 Server资源配置流程 配置顺序 配置任务 场景说明 1 配置Lite Server网络 Server资源开通后,需要进行网络配置,才可使其与Internet通信。在后续配置存储和软件环境时需要Server服务器能够访问网络,因此需要先完成网络配置。 2 配置Lite Server存储 Server资源需要挂载数据盘用于存储数据文件,当前支持SFS、OBS、EVS三种 云存储 服务,提供了多种场景下的存储解决方案。 3 配置Lite Server软件环境 不同镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。当Server服务器中预装的软件无法满足业务需求时,您可在Server服务器中配置所需要的软件环境。 父主题: Lite Server资源配置
-
Lite Server使用流程 ModelArts Lite Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即可迅速创建弹性裸金属服务器,获取所需的云上物理资源,充分满足算法工程师在日常训练和推理工作中的需求。 本文旨在帮助您了解Lite Server的基本使用流程,帮助您快速上手,使用流程包含以下步骤。 图1 使用流程 资源开通 由于Server为一台裸金属服务器,因此需要先购买资源后才能使用。 首先请先联系客户经理确认Server资源方案,部分规格为受限规格,因此需要申请开通您所需的资源规格。 Server所需资源可能会超出华为云默认提供的资源配额(如E CS 、EIP、SFS),因此需要提交工单提升资源配额。 为子用户账号开通Server功能所需的基础权限。 由于ModelArts服务在使用过程中会访问其他依赖服务,因此需要给ModelArts进行委托授权。 购买Server资源时,需要选择虚拟私有云用于网络通信,您可以使用已有的虚拟私有云或新创建的虚拟私有云。 若使用密钥对作为登录裸金属服务器的鉴权方式,您可以使用已有的密钥对或新创建的密钥对。 在ModelArts控制台购买Server资源。 资源配置 完成资源购买后,需要对网络、存储、软件环境进行相关配置。 资源使用 完成资源配置后,您可以登录到服务器进行训练和推理,具体案例可参考Lite Server资源使用。 资源管理 Lite Server提供启动、停止、切换操作系统等管理手段,您可在ModelArts控制台上对资源进行管理。 表1 相关名词解释 名词 含义 裸金属服务器 裸金属服务器是一款兼具虚拟机弹性和物理机性能的计算类服务,为您和您的企业提供专属的云上物理服务器,为核心数据库、关键应用系统、高性能计算、大数据等业务提供卓越的计算性能以及数据安全。 由于Server是一台裸金属服务器,在ModelArts管理控制台购买Server后,会在BMS管理控制台上创建一台与Server对应的裸金属服务器,后续挂载磁盘、绑定弹性网络IP等操作可在BMS服务控制台上完成。 xPU xPU泛指GPU和NPU。 GPU,即图形处理器,主要用于加速深度学习模型的训练和推理。 NPU,即神经网络处理器,是专门为加速神经网络计算而设计的硬件。与GPU相比,NPU在神经网络计算方面具有更高的效率和更低的功耗。 密钥对 弹性裸金属支持SSH密钥对的方式进行登录,用户无需输入密码就可以登录到弹性裸金属服务器,因此可以防止由于密码被拦截、破解造成的账户密码泄露,从而提高弹性裸金属服务器的安全性。 说明: 为保证云服务器安全,未进行私钥托管的私钥只能下载一次,请妥善保管。 虚拟私有云 虚拟私有云(Virtual Private Cloud,VPC)为裸金属服务器构建隔离的、用户自主配置和管理的虚拟网络环境,提升用户云中资源的安全性,简化用户的网络部署。您可以在VPC中定义安全组、VPN、IP地址段、带宽等网络特性。用户可以通过VPC方便地管理、配置内部网络,进行安全、快捷的网络变更。同时,用户可以自定义安全组内与组间的访问规则,加强裸金属服务器的安全保护。 父主题: Lite Server使用前必读
-
操作步骤 使用以下脚本测得GPU服务器内NVLINK带宽性能。 import torch import numpy as np device = torch.device("cuda") n_gpus = 8 data_size = 1024 * 1024 * 1024 # 1 GB speed_matrix = np.zeros((n_gpus, n_gpus)) for i in range(n_gpus): for j in range(i + 1, n_gpus): print(f"Testing communication between GPU {i} and GPU {j}...") with torch.cuda.device(i): data = torch.randn(data_size, device=device) torch.cuda.synchronize() with torch.cuda.device(j): result = torch.randn(data_size, device=device) torch.cuda.synchronize() with torch.cuda.device(i): start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() result.copy_(data) end.record() torch.cuda.synchronize() elapsed_time_ms = start.elapsed_time(end) transfer_rate = data_size / elapsed_time_ms * 1000 * 8 / 1e9 speed_matrix[i][j] = transfer_rate speed_matrix[j][i] = transfer_rate print(speed_matrix) 以Ant8 GPU裸金属服务器为例, 其理论GPU卡间带宽为:NVIDIA*NVLink*Bridge for 2GPUS: 400GB/s。使用上述测试脚本测得带宽性能进行如下分析。 正常模式-NVLINK全互通,带宽约为370GB。基本符合预期,且证明Ant GPU裸金属服务器内部GPU间确实走NVLINK模式,且完全互联。 图2 正常模式带宽性能 异常模式-NVLINK部分互通,出现带宽波动较大的情况。如下图中GPU0和GPU4之间带宽远低于理论值, 存在问题。 图3 异常模式带宽性能 出现这种现象, 可尝试重装nvidia/cuda/nvidia-fabricmanager, 重装后再测试又恢复到了正式模式,GPU0和GPU4之间带宽恢复到370GB/s。 可能原因如下,仅供参考: 驱动程序问题:可能是由于驱动程序没有正确安装或配置,导致NVLINK带宽受限。重新安装nvidia驱动、CUDA和nvidia-fabricmanager等软件后,驱动程序可能已经正确配置,从而解决了这个问题。 硬件问题:如果GPU之间的NVLINK连接存在硬件故障,那么这可能会导致带宽受限。重新安装软件后,重启系统,可能触发了某种硬件自检或修复机制,从而恢复了正常的带宽。 系统负载问题:最初测试GPU卡间带宽时,可能存在其他系统负载,如进程、服务等,这些负载会占用一部分网络带宽,从而影响NVLINK带宽的表现。重新安装软件后,这些负载可能被清除,从而使NVLINK带宽恢复正常。
-
原因分析 分析EulerOS内核是如何在不知情的情况下升级的: 首先查看当前操作系统内核。 [root@Server-ddff ~]# uname -r 4.18.0-147.5.1.6.h934.eulerosv2r9.x86_64 一般执行如下升级命令,就会导致自动下载和安装高级内核版本。 yum update -y 执行后查看当前可用内核,发现已经新增了内核h998: [root@Server-ddff ~]# [root@Server-ddff ~]# cat /boot/grub2/grub.cfg |grep "menuentry " menuentry 'EulerOS (4.18.0-147.5.1.6.h998.eulerosv2r9.x86_64) 2.0 (SP9x86_64)' --class euleros --class gnu-linux --class gnu --class os --unrestricted $menuentry_id_option 'gnulinux-4.18.0-147.5. 1.6.h934.eulerosv2r9.x86_64-advanced-f6aefacb-f2d3-4809-b708-6ad0357037f5' { menuentry 'EulerOS (4.18.0-147.5.1.6.h934.eulerosv2r9.x86_64) 2.0 (SP9x86_64)' --class euleros --class gnu-linux --class gnu --class os --unrestricted $menuentry_id_option 'gnulinux-4.18.0-147.5. 1.6.h934.eulerosv2r9.x86_64-advanced-f6aefacb-f2d3-4809-b708-6ad0357037f5' { menuentry 'EulerOS (0-rescue) 2.0 (SP9x86_64)' --class euleros --class gnu-linux --class gnu --class os --unrestricted $menuentry_id_option 'gnulinux-0-rescue-advanced-f6aefacb-f2d3-4809-b708-6ad 0357037f5' { [root@Server-ddff ~]# 查看假如reboot(尚未reboot)后默认选择的内核版本: [root@Server-ddff ~]# grub2-editenv list saved_entry=EulerOS (4.18.0-147.5.1.6.h998.eulerosv2r9.x86_64) 2.0 (SP9x86_64) boot_success=0 [root@Server-ddff ~]# 发现默认系统内核已经变为h998,reboot后就会生效。 此时若重启那么内核版本就被升级了。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格