云服务器内容精选
-
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 多模态模型脚本相对路径是llm_tools/llm_evaluation/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer \ --epochs 5 \ --parallel-num 1 4 8 16 32 \ --prompt-tokens 1024 2048 \ --output-tokens 128 256 \ --height ${height} \ --width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。
-
benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark |--- modal_benchmark_parallel.py # modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
-
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark |--- modal_benchmark_parallel.py # modal 评测静态性能脚本 |--- utils.py ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt # 第三方依赖
-
动态benchmark 本章节介绍如何进行动态benchmark验证。 获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py脚本,指定输入输出长度的均值和标准差,生成一定数量的正态分布的数据。具体操作命令如下,可以根据参数说明修改参数。 cd benchmark_tools python generate_dataset.py --dataset custom_datasets.json --tokenizer /path/to/tokenizer \ --min-input 100 --max-input 3600 --avg-input 1800 --std-input 500 \ --min-output 40 --max-output 256 --avg-output 160 --std-output 30 --num-requests 1000 generate_dataset.py脚本执行参数说明如下: --dataset:数据集保存路径,如custom_datasets.json。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径。backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --min-input:输入tokens最小长度,可以根据实际需求设置。 --max-input:输入tokens最大长度,可以根据实际需求设置。 --avg-input:输入tokens长度平均值,可以根据实际需求设置。 --std-input:输入tokens长度方差,可以根据实际需求设置。 --min-output:最小输出tokens长度,可以根据实际需求设置。 --max-output:最大输出tokens长度,可以根据实际需求设置。 --avg-output:输出tokens长度平均值,可以根据实际需求设置。 --std-output:输出tokens长度标准差,可以根据实际需求设置。 --num-requests:输出数据集的数量,可以根据实际需求设置。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda activate python-3.9.10 执行脚本benchmark_serving.py测试动态benchmark。具体操作命令如下,可以根据参数说明修改参数。 python benchmark_serving.py --backend vllm --host ${docker_ip} --port 8080 --dataset custom_datasets.json --dataset-type custom \ --tokenizer /path/to/tokenizer --request-rate 0.01 1 2 4 8 10 20 --num-prompts 10 1000 1000 1000 1000 1000 1000 \ --max-tokens 4096 --max-prompt-tokens 3768 --benchmark-csv benchmark_serving.csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种 "alpaca","sharegpt","custom"。custom为自定义数据集。 --tokenizer:tokenizer路径,可以是HuggingFace的权重路径,backend取值是openai时,tokenizer路径需要和推理服务启动时--model路径保持一致,比如--model /data/nfs/model/llama_7b, --tokenizer也需要为/data/nfs/model/llama_7b,两者要完全一致。 --request-rate:请求频率,支持多个,如 0.1 1 2。实际测试时,会根据request-rate为均值的指数分布来发送请求以模拟真实业务场景。 --num-prompts:某个频率下请求数,支持多个,如 10 100 100,数量需和--request-rate的数量对应。 --max-tokens:输入+输出限制的最大长度,模型启动参数--max-input-length值需要大于该值。 --max-prompt-tokens:输入限制的最大长度,推理时最大输入tokens数量,模型启动参数--max-total-tokens值需要大于该值,tokenizer建议带tokenizer.json的FastTokenizer。 --benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。 图2 动态benchmark测试结果(示意图)
-
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。 cd benchmark_tools 语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs 5 --num-scheduler-steps 8 \ --parallel-num 1 4 8 16 32 --prompt-tokens 1024 2048 --output-tokens 128 256 --benchmark-csv benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5。 --parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1。 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --enable-prefix-caching:服务端是否启用enable-prefix-caching特性,默认为false。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中,示例如下图所示。 图1 静态benchmark测试结果(示意图)
-
单条请求性能测试 针对openai的/v1/completions以及/v1/chat/completions两个非流式接口,请求体中可以添加可选参数"return_latency",默认为false,若指定该参数为true,则会在相应请求的返回体中返回字段"latency",返回内容如下: prefill_latency(首token时延):请求从到达服务开始到生成首token的耗时 model_prefill_latency(模型计算首token时延):服务从开始计算首token到生成首token的耗时 avg_decode_latency(平均增量token时延):服务计算增量token的平均耗时 time_in_queue(请求排队时间):请求从到达服务开始到开始被调度的耗时 request_latency(请求总时延):请求从到达服务开始到结束的耗时 以上指标单位均是ms,保留2位小数。
-
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-3rdLLM-x.x.x.zip的llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel.py # 评测静态性能脚本 ├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本 父主题: 推理性能测试
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格