云服务器内容精选
-
对有更新操作的数据流进行聚合计算时要注意数据准确性问题 在针对更新数据进行聚合需要选择合适的解决方案,否则聚合结果会是错误的。 例如: Create table t1( id int, partid int, value int ); select partid,sum(value) from t1 group by partid; 第一批数据:[1,1,10],[2,1,11],[3,2,8] 聚合结果:[1,21],[2,8] 第二批数据:[2,1,12] //对ID=2的记录进行更新。 错误结果:[1,33],[2,8] //若是无法识别是对ID=2的数据进行了更新。 聚合结果:[1,22],[2,8] //识别为更新操作可以得到正确结果。 对于如何识别是更新数据有三种方式: 通过状态后端解决 通过状态后端存储所有原始数据,新来的数据根据状态来判断是否是更新操作,进而通过Flink聚合回撤机制实现聚合结果数据的更新。 优点:可以解决聚合准确性问题,而且对用户友好,对数据没有要求。 缺点:大数据量情况下状态后端存储的数据比较多。 通过CDC格式数据解决 CDC格式数据是指更新操作记录中会同时包含更新前数据和更新后数据。通过更新前的内容来回撤掉之前的聚合结果,通过更新后的数据更新最新的计算结果。 优点:不需要有大的状态后端存储,整体计算资源压力要小于基于状态后端的方案。 缺点:需要依赖于数据格式,常见的方式通过CDC采集工具,将数据采集到Kafka,然后Flink读Kafka数据进行计算。 通过changelog数据解决 changelog与CDC格式的数据类似,只不过存储的方式不同,CDC格式数据会将更新前和更新后的数据在一行记录,而changelog数据会将更新数据拆分成两行,一行是对更新前数据的删除操作,一行是更新后的数据插入操作记录。Flink在计算的时候会将基于更新数据的聚合结果删除,在将基于更新后数据的计算结果插入。changelog可以基于Hudi表实现,基于CDC格式的数据可以转为changelog数据存储到Hudi的MOR表的log文件中,也可以基于状态后端生成Hudi的changelog数据。 优点:可以基于湖存储实现更新数据聚合一致性保证。 缺点: Hudi的MOR表中仅在log文件中存在changelog数据,如果Flink作业计算延迟导致上游数据积压,而Hudi又清理了log文件,就会导致changelog丢失。针对这种情况需要保留版本数多一点,且给Flink作业合理的资源配置避免数据积压周期超过了清理周期。 基于状态后端生成changelog也是依赖于状态后端的,状态后端通常是会配置TTL时间的,不会永久保留。这种场景下更新操作是任意更新,没有一定时间周期限制。例如更新近一个月的数据,TTL设置大于一个月即可;若更新全部数据,就需要设置TTL为永久,不适用于大表。 目前changelog的MOR表,仅支持Flink引擎进行compaction处理,不支持Spark引擎。
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格