云服务器内容精选

  • 操作流程 盘古NLP大模型SFT任务创建流程见表1。 表1 盘古NLP大模型SFT任务创建流程 操作步骤 说明 步骤1:导入数据至盘古平台 本样例场景实现将存储在OBS的文本数据导入至盘古平台,并上线为原始数据集。 步骤2:加工文本类数据集 本样例场景帮助用户利用数据集加工算子处理原始数据集。 步骤3:标注文本类数据集 本样例场景帮助用户高效完成数据标注任务,提升标注数据的可靠性和可用性。 步骤4:评估文本类数据集 本样例场景帮助用户利用数据集评估标准评估和优化数据质量。 步骤5:发布文本类数据集 本样例场景实现将处理好的数据集发布为模型训练可用的数据集。 步骤6:训练NLP大模型 本样例场景实现NLP大模型的训练操作。 步骤7:压缩NLP大模型 本样例场景实现NLP大模型的压缩操作。压缩是指通过减少模型的参数量或计算复杂度,在尽量保持模型性能的前提下,减小其存储需求和推理时间,从而提升模型的部署效率,尤其在资源受限的环境中具有重要意义。常见的压缩方法包括剪枝、量化、知识蒸馏等。 步骤8:部署NLP大模型 本样例场景实现NLP大模型的部署操作。
  • 盘古NLP大模型能力与规格 盘古大模型平台为用户提供了多种规格的模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古NLP大模型规格 模型支持区域 模型名称 可处理最大Token长度 说明 西南-贵阳一 Pangu-NLP-N1-Chat-32K-20241030 32K 盘古NLP大模型,此版本是2024年10月发布的十亿级模型版本,支持8K序列长度训练,4K、32K序列长度推理。基于Snt9B3卡可单卡推理部署,此模型版本支持全量微调、LoRA微调、INT8量化、断点续训、在线推理和能力调测特性。 Pangu-NLP-N1-Chat-128K-20241030 128K 此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支持预置模型版本,不支持SFT后模型版本做128K序列长度推理部署。 Pangu-NLP-N2-Base-20241030 - 此版本是2024年10月发布的百亿级模型版本,支持模型增量预训练。基于Snt9B3卡支持32卡起训,预训练后的模型版本需要通过SFT之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 此版本是2024年10月发布的百亿级模型版本,支持8K序列长度训练,4K、32K序列长度推理。基于Snt9B3卡可支持32卡起训,支持4卡推理部署,此模型版本支持全量微调、LoRA微调、INT8量化、断点续训、在线推理、能力调测、边缘部署特性。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力 模型 预训练 微调 模型压缩 在线推理 能力调测 Pangu-NLP-N1-Chat-32K-20241030 - √ √ √ √ Pangu-NLP-N1-Chat-128K-20241030 - - - √ √ Pangu-NLP-N2-Base-20241030 √ - - - - Pangu-NLP-N2-Chat-32K-20241030 - √ √ √ √ 父主题: 模型能力与规格
  • 盘古科学计算大模型能力与规格 盘古大模型平台为用户提供了多种规格的模型,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古科学计算大模型规格 模型支持区域 模型名称 说明 西南-贵阳一 Pangu-AI4S-Ocean_24h-20241030 此版本在Studio上首次发布,用于海洋基础要素预测,支持在线推理、能力调测特性,可以Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241030 此版本在Studio上首次发布,用于区域海洋基础要素预测,支持预训练、微调、在线推理、能力调测特性,基于Snt9B3支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Ocean_Ecology_24h-20241030 此版本在Studio上首次发布,用于海洋生态要素预测,支持在线推理、能力调测特性,基于Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Swell_24h-20241030 此版本在Studio上首次发布,用于海浪预测,支持在线推理、能力调测特性,基于Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Weather_Precip-20241030 此版本在Studio上首次发布,用于降水预测,支持在线推理、能力调测特性,基于Snt9B3部署,支持1个推理单元部署推理。 Pangu-AI4S-Weather_1h-20241030 此版本在Studio上首次发布,用于天气基础要素预测,时间分辨率为1小时,支持预训练、微调、在线推理、能力调测特性,基于Snt9B33,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_3h-20241030 此版本在Studio上首次发布,用于天气基础要素预测,时间分辨率为3小时,支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_6h-20241030 此版本在Studio上首次发布,用于天气基础要素预测,时间分辨率为6小时,支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_24h-20241030 此版本在Studio上首次发布,用于天气基础要素预测,时间分辨率为24小时,支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算大模型支持的具体操作: 表2 盘古科学计算大模型支持的操作 模型 预训练 微调 模型压缩 在线推理 能力调测 Pangu-AI4S-Ocean_24h-20241030 - - - √ √ Pangu-AI4S-Ocean_Regional_24h-20241030 √ √ - √ √ Pangu-AI4S-Ocean_Ecology_24h-20241030 - - - √ √ Pangu-AI4S-Ocean_Swell_24h-20241030 - - - √ √ Pangu-AI4S-Weather_Precip-20241030 - - - √ √ Pangu-AI4S-Weather_1h-20241030 √ √ - √ √ Pangu-AI4S-Weather_3h-20241030 √ √ - √ √ Pangu-AI4S-Weather_6h-20241030 √ √ - √ √ Pangu-AI4S-Weather_24h-20241030 √ √ - √ √ 父主题: 模型能力与规格
  • 使用“能力调测”调用科学计算大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建科学计算大模型部署任务。 科学计算大模型支持全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球海洋生态、全球海浪高度预测能力,在选择好模型后,根据需求选择相应的数据和模型配置信息,模型就会返回相应的预测结果。 表1 科学计算大模型能力调测参数说明(天气/降水预测) 参数 说明 场景 支持选择全球中期天气要素预测、全球中期降水预测。 全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。 中期天气要素模型包括6h分辨率模型,即以起报时刻开始,可以逐6h往后进行降水情况的预测。 结果存储路径 用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m v风、2米温度、海平面气压,没有选择的变量推理结果将不输出。 高空变量 设置高空变量参数,包括:4个表面层特征(10m u风、10m v风、2米温度、海平面气压),13高空层次(1000、925、850、700、600、500、400、300、250、200、150、100、50hPa)的5个高空层特征(重力位势、u风、v风、比湿、温度),分辨率为25km*25km的网格数据。 集合预报 用于选择是否开启集合预报。 在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 集合成员数 用于选择生成预报的不同初始场的数量,取值为2~10。 扰动类型 用于选择生成集合预报初始场的扰动类型,包括perlin加噪和CNOP加噪两种方式。 Peilin噪音通过对输入数据(比如空间坐标)进行随机扰动,让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 初始扰动数量 用于选择集合预报的CNOP初始扰动数量。 在CNOP的加噪方式中,会先对初始场进行一定数量的加噪得到一组加噪后的初始场,然后从这组初始场中选择能量变化最大的初始场作为集合预报的初始场,启动推理作业。 ensemble_noise_perlin_scale 用于选择集合预报的Perlin加噪强度。 ensemble_noise_perlin_x 用于选择集合预报的Perlin加噪x经度方向的尺度。 ensemble_noise_perlin_octave 用于选择集合预报的Perlin加噪octave。Perlin噪音的octave指的是噪音的频率,在生成Perlin噪音时,可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 ensemble_noise_perlin_y 用于选择集合预报的Perlin加噪y纬度方向的尺度。 输出设置 用于选择是否输出图片结果。 表2 科学计算大模型能力调测参数说明(海洋类预测) 参数 说明 场景 支持选择全球海洋要素、区域海洋要素、全球海洋生态、全球海浪高度。 全球海洋要素:实现预测全球范围内海面高度, 温度、盐度、海流速度纬向分量和海流速度经向分量变量。 区域海洋要素:实现预测特定区域范围内海面高度, 温度、盐度、海流速度纬向分量和海流速度经向分量变量。 全球海洋生态:实现预测全球范围内的叶绿素浓度、硅藻浓度等8种生态变量。 全球海浪高度:实现预测有效波高的变量。 模型服务 支持选择用于启动推理作业的模型。 结果存储路径 用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对海洋模型预测参数进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 海表变量 用于描述海洋表面及其生态系统状态的具体指标,尤其是在海洋模型中用于模拟海洋生态和物理过程的输入变量。包括海平面气压、海表高度、总叶绿素浓度、叶绿素浓度、硅藻浓度、颗石藻浓度、蓝藻浓度、铁浓度、硝酸盐浓度、混合层深度、海表高度、有效波高等指标。不同模型的指标已页面展示为准。 深海变量 用于描述海洋深层的物理和化学特性,这些参数在海洋模型中用于模拟海洋内部的动态和状态。包括海温、海盐、海流径向速率、海流纬向速率等。 输出设置 用于选择是否输出图片结果。 图1 调测科学计算大模型-1(天气/降水预测) 图2 调测科学计算大模型-2(天气/降水预测) 图3 调测科学计算大模型(海洋类预测) 父主题: 调用科学计算大模型
  • 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型和修改作业配置参数,但在修改部署时模型不可替换或修改作业配置参数。 在“模型更新”或“修改部署”后进行升级配置操作。平台支持全量升级方式:新旧版本的服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。 图1 模型更新 图2 修改部署
  • 科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如: INFO: root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 父主题: 训练科学计算大模型
  • 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。 图2 获取训练日志
  • 查看训练指标 对于已完成训练,训练状态是“训练完成”状态的任务,单击任务名称,可在“训练结果”页面查看训练指标,不同模型的训练指标介绍请参见表2。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 科学计算大模型 Loss 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量或在深海变量预测结果与真实结果之间差距的指标。该值越小,表示模型在高空(深海)变量的预测精度越高。 表面Loss(海表Loss) 表面Loss(海表Loss)是衡量模型在表面层次变量或在海表变量预测结果与真实结果之间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMS E 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。 ACC ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,值越接近+1表示预报与观测的一致性越好,值为0表示没有相关性,而负值则表示反向相关。 RQE 衡量预测值与真实值之间差距的指标。它是所有单个观测的相对误差的平方和。该值越小,代表模型性能越好。
  • 查看模型训练状态 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练指标、训练任务详情和训练日志。 表1 训练状态说明 训练状态 训练状态含义 已发布 模型已经训练完成并进行发布,用户可以使用模型进行部署、推理操作。 训练完成 模型训练已经成功完成。 训练中 模型正在训练中,训练过程尚未结束。 训练失败 模型训练过程中出现错误,需查看日志定位训练失败原因。 已停止 模型训练已被用户手动停止。 停止中 模型训练正在停止中。 训练异常 模型训练过程中出现了非预期的异常情况,需查看日志定位训练异常原因。 待启动 模型训练任务已经创建,但尚未启动训练过程。 初始化 模型训练任务正在进行初始化配置,准备开始训练。
  • 科学计算大模型训练流程介绍 科学计算大模型主要用于。 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。 微调阶段:在预训练模型的基础上,微调利用特定领域的数据进一步优化模型,使其更好地满足实际任务需求。例如,区域海洋要素预测的微调是在已有模型上添加最新数据,不改变模型结构参数或引入新要素,以适应数据更新需求。 在实际流程中,通过设定训练指标对模型进行监控,以确保效果符合预期。在微调后,评估用户模型,并进行最终优化,确认其满足业务需求后,进行部署和调用,以便实际应用。
  • 科学计算大模型选择建议 科学计算大模型支持训练的模型类型有:中期天气要素预测模型、区域中期海洋智能预测模型。 中期天气要素预测模型选择建议: 科学计算大模型的中期天气要素预测模型,可以对未来一段时间的天气进行预测,具备以下优势: 高时间精度:中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况。高时间精度对于农业、交通、能源等领域的决策和规划非常重要。 全球覆盖:中期天气要素预测模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里*25公里的空间。 数据驱动:中期天气要素预测模型使用历史天气数据来训练模型,从而提高预测的准确性。这意味着它可以直接利用过去的观测数据,而不仅仅依赖于数值模型。 中期天气要素预测模型信息见表1。 表1 中期天气要素预测模型信息 模型 预报层次 预报高空变量 预报表面变量 降水 时间分辨率 水平分辨率 区域范围 中期天气要素预测模型 13层(1000hpa, 925hpa, 850hpa, 700hpa, 600hpa, 500hpa, 400hpa, 300hpa, 250hpa, 200hpa, 150hpa, 100hpa, 50hpa) T:温度 Q:比湿 Z:重力位势 U:U风 V:V风 MLSP:海平面气压 U10:10米U风,经度方向 V10:10米V风,纬度方向 T2M:2米温度 - 1、3、6、24小时 0.25°*0.25° 全球 该模型类型主要用于天气基础要素预测,支持训练的模型清单见表2,您可根据具体使用场景选择合适的模型。例如天气基础要素预测,需要时间分辨率为1小时的场景下,您可以选择Pangu-AI4S-Weather_1h-20241030模型。 表2 中期天气要素预测模型的类型 模型支持区域 模型名称 使用场景 说明 西南-贵阳一 Pangu-AI4S-Weather_1h-20241030 用于天气基础要素预测,时间分辨率为1小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B33,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_3h-20241030 用于天气基础要素预测,时间分辨率为3小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_6h-20241030 用于天气基础要素预测,时间分辨率为6小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_24h-20241030 用于天气基础要素预测,时间分辨率为24小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 区域中期海洋智能预测模型选择建议: 科学计算大模型的中期海洋智能预测模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。区域中期海洋智能预测模型当前主要包括区域海洋要素模型,信息见表3。 表3 区域中期海洋智能预测模型信息 模型 深海层深 预报深海变量 预报海表变量 时间分辨率 水平分辨率 区域范围 区域海洋要素模型 0m, 6m, 10m, 20m, 30m, 50m, 70m, 100m, 125m, 150m, 200m, 250m, 300m, 400m, 500m T:海温(℃) S:海盐(PSU) U:海流经向速率 (ms-1) V:海流纬向速率 (ms-1) SSH:海表高度(m) 24h 1/12° 特定区域 该模型类型主要用于区域海洋基础要素预测,支持训练的模型清单见表4,您可根据具体使用场景选择合适的模型。例如区域海洋基础要素预测场景下,您可以选择Pangu-AI4S-Ocean_Regional_24h-20241030模型。 表4 区域中期海洋智能预测模型的类型 模型支持区域 模型名称 使用场景 说明 西南-贵阳一 Pangu-AI4S-Ocean_Regional_24h-20241030 用于区域海洋基础要素预测 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3支持1个训练单元训练及1个推理单元部署。
  • 科学计算大模型训练类型选择建议 中期天气要素预测模型的训练类型选择建议: 中期天气要素预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的中期天气要素预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:训练用于添加新的高空层次、高空变量或表面变量。如果您需要在现有模型中引入新要素,需要使用训练(重新训练模型)。在重训配置参数时,您可以选择新要素进行训练。请注意,所选的数据集必须包含您想要添加的新要素。此外,您还可以通过训练更改所有的模型参数,以优化模型性能。 微调:微调是将新数据应用于已有模型的过程。它适用于不改变模型结构参数和引入新要素的情况。如果您有新的观测数据,可以使用微调来更新模型的权重,以适应新数据。 区域中期海洋智能预测模型的训练类型选择建议: 区域中期海洋智能预测模型的训练支持预训练、微调两种操作,如果直接使用平台预置的区域中期海洋智能预测模型不满足您的使用要求时,可以进行预训练或微调。预训练、微调操作的适用场景如下: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以及区域范围,适用于想自定义自己的区域模型的场景,需预先准备好区域高精度数据。 微调:在已有模型的基础上添加新数据,它适用于不改变模型结构参数和引入新要素的情况,添加最新数据的场景。
  • 构建科学计算大模型数据集流程 在ModelArts Studio大模型开发平台中,使用数据工程创建盘古科学计算大模型数据集流程见表2。 表2 盘古科学计算大模型数据集构建流程 流程 子流程 说明 操作指导 导入数据至盘古平台 创建原始数据集 数据集是指用于模型训练或评测的一组相关数据样本,上传至平台的数据将被创建为原始数据集进行统一管理。 创建原始数据集 上线原始数据集 在正式发布数据集前,需要执行上线操作。 上线原始数据集 加工数据集(可选) 创建气象类数据集加工任务 数据集中若存在异常数据,可通过数据集加工功能去除异常字符、表情符号、个人敏感内容等。 创建气象类数据集加工任务 上线加工后的数据集 对加工后的数据集执行上线操作。 上线加工后的文本类数据集 发布数据集 创建气象类数据集发布任务 创建发布数据集,并进行正式的发布操作,用于后续的训练、评测任务。 发布气象类数据集
  • 统计模型调用信息 针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界面,可额外查看响应时长以及安全护栏拦截次数。 父主题: 调用NLP大模型
  • 使用“能力调测”调用NLP大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP大模型部署任务。 NLP大模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP大模型 表1 NLP大模型能力调测参数说明 参数 说明 温度 用于控制生成文本的多样性和创造力。调高温度会使得模型的输出更多样性和创新性。 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 最大口令限制 用于控制聊天回复的长度和质量。 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。 词汇重复度控制 用于调整模型对频繁出现的词汇的处理方式。调高参数会使模型减少相同词汇的重复使用,促使模型使用更多样化的词汇进行表达。 历史对话保留轮数 选择“多轮对话”功能时具备此参数。表示系统能够记忆的历史对话数。 父主题: 调用NLP大模型