云服务器内容精选
-
Step6 推理 执行如下命令使用官方权重推理。推理脚本inference.py 会自动下载官方权重文件。 torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path ./OpenSora-v1-HQ-16x512x512.pth 如果自动下载官方权重文件OpenSora-v1-HQ-16x512x512.pth失败,建议手动下载权重文件并上传到容器/home/ma-user/ascendcloud-aigc-algorithm-open_sora/目录中。 "OpenSora-v1-HQ-16x512x512.pth": "https://huggingface.co/hpcai-tech/Open-Sora/resolve/main/OpenSora-v1-HQ-16x512x512.pth" 执行如下命令使用训练后生成的权重推理。训练完成后会在工作目录/home/ma-user/ascendcloud-aigc-algorithm-open_sora/下自动生成一个outputs文件夹,训练后生成的权重文件存放在outputs文件夹中,例如outputs/010-F16S3-STDiT-XL-2/epoch1-global_step2000/。 export CKPT_PATH=./outputs/.../ #由训练日志中获得 torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path $CKPT_PATH 如果要使用自己的prompt进行推理,可以修改用户自己推理脚本配置文件中prompt_path。例如在configs/opensora/inference/64x512x512.py配置文件中,使用了自己的prompt文件overfit.txt。 图9 修改prompt_path
-
Step5 启动训练服务 训练至少需要单机8卡。建议手动下载所需的权重文件,放在weights文件夹下。在/home/ma-user/ascendcloud-aigc-algorithm-open_sora/目录下进行操作。 创建weights文件夹。 mkdir weights 下载基础模型权重:PixArt-XL-2-512x512.pth和PixArt-XL-2-256x256.pth cd weights # 下载PixArt-XL-2-512x512.pth和PixArt-XL-2-256x256.pth wget https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-512x512.pth wget https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-256x256.pth 下载VAE权重:sd-vae-ft-ema 在weights文件夹下创建sd-vae-ft-ema文件夹。 mkdir sd-vae-ft-ema 然后进入官网地址: https://huggingface.co/stabilityai/sd-vae-ft-ema/tree/main,手动下载如图2所示四个文件,并上传到服务器的/home/ma-user/ascendcloud-aigc-algorithm-open_sora/weights/sd-vae-ft-ema/目录下。 图2 Huggingface中sd-vae-ft-ema模型目录内容 上传完成后,weights/sd-vae-ft-ema/目录内容如图3所示。 图3 服务器 weights/sd-vae-ft-ema/目录内容 下载Encoder模型权重:DeepFloyd/t5-v1_1-xxl 在weights文件夹下创建t5-v1_1-xxl文件夹。 mkdir t5-v1_1-xxl 然后进入官网地址 https://huggingface.co/DeepFloyd/t5-v1_1-xxl/tree/main,手动下载如图4所示文件,并放到 /home/ma-user/ascendcloud-aigc-algorithm-open_sora/weights/t5-v1_1-xxl 文件夹下。 图4 Huggingface中t5-v1_1-xxl模型目录内容 上传完成后,weights/t5-v1_1-xxl/目录下内容如图5所示。 图5 服务器 weights/t5-v1_1-xxl/目录内容 最后weights文件夹下内容目录如图6所示。 图6 服务器weights目录 从weights目录下返回到代码目录下。 cd .. 在/home/ma-user/ascendcloud-aigc-algorithm-open_sora/目录下执行如下命令启动训练脚本。 torchrun --nnodes=1 --nproc_per_node=8 train.py configs/opensora/train/64x512x512.py 正常训练过程如下图所示。训练完成后,关注loss值,loss曲线收敛,记录总耗时和单步耗时。训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 图7 正常训练过程 训练完成后权重保存在自动生成的目录,例如:outputs/010-F16S3-STDiT-XL-2/epoch1-global_step2000/。 图8 训练完成后权重保存信息
-
Step3 获取代码包并安装依赖 下载插件代码包AscendCloud-3rdAIGC-6.3.905-xxx.zip文件,上传到容器的/home/ma-user/目录下,解压并安装相关依赖。获取路径参见获取软件和镜像。 mkdir -p /home/ma-user/ascendcloud-aigc-algorithm-open_sora #创建目录 cd /home/ma-user/ascendcloud-aigc-algorithm-open_sora/ #进入目录 unzip -zxvf AscendCloud-3rdAIGC-6.3.905-*.zip tar -zxvf ascendcloud-aigc-algorithm-open_sora.tar.gz rm -rf AscendCloud-3rdAIGC-6.3.905-* 安装Python环境。 pip install -r requirements.txt cp attention_processor.py /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/diffusers/models/attention_processor.py cp low_level_optim.py /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/colossalai/zero/low_level/low_level_optim.py
-
Step7 精度对比 由于NPU和GPU生成的随机数不一样,需要固定二者的随机数再进行精度对比。通常的做法是先用GPU单卡跑一遍训练,生成固定下来的随机数。然后NPU和GPU都用固定的随机数进行单机8卡训练,比较精度。 训练精度对齐。对齐前2000步的loss,观察loss在极小误差范围内。 GPU环境下,使用Github中的官方代码跑训练任务。Github中的官方代码下载路径:https://github.com/hpcaitech/Open-Sora/tree/v1.0.0 在NPU代码 configs/opensora/train/64x512x512.py中把 epochs = 200000 临时改成 epochs = 2000 图10 配置文件64x512x512.py 修改训练步数 将NPU代码中configs/opensora/train/64x512x512.py文件和configs/opensora/inference/64x512x512.py文件复制到GPU代码目录中,使用相同的参数配置文件。 将NPU代码目录中的opensora/schedulers/iddpm/__init__.py文件和opensora/schedulers/iddpm/gaussian_diffusion.py文件复制到GPU代码目录中,添加固定随机数功能。 进行GPU单机八卡训练,生成固定训练随机数,随机数会保存在noise文件夹中。 mkdir noise_train #创建文件夹noise_train,用于存放生成的随机数 export LOCK_RAND=True #是否固定随机数 export SAVE_RAND=True #是否保存生成的随机数 export NOISE_PATH="./noise_train" #将生成的随机数保存在"./noise_train"目录 torchrun --nnodes=1 --nproc_per_node=8 train.py configs/opensora/train/64x512x512.py 正常训练时不需要增加如下命令,只有训练精度对比时需要。 export LOCK_RAND=True #是否固定随机数 export SAVE_RAND=True #是否保存生成的随机数 export NOISE_PATH="./noise_train" #将生成的随机数保存在"./noise_train"目录 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机8卡训练,比较在相应目录下生成的loss.txt文件。在NPU训练前,需要将上面GPU单机单卡训练生成的"./noise_train"文件夹移到NPU相同目录下。NPU和GPU的训练命令相同,如下。 export LOCK_RAND=True export SAVE_RAND=False export NOISE_PATH="./noise_train" torchrun --nnodes=1 --nproc_per_node=8 train.py configs/opensora/train/64x512x512.py GPU和NPU训练脚本中的参数要保持一致,除了参数dtype。NPU环境下,dtype="fp16",GPU环境下,dtype="bf16"。 基于NPU训练后的权重文件和GPU训练后的权重文件,对比推理精度。推理精度对齐流程和训练精度对齐流程相同,先在GPU固定推理的随机数。 mkdir noise_test1 #创建文件夹noise_test1,用于存放生成的随机数 export LOCK_RAND=True #是否固定随机数 export SAVE_RAND=True #是否保存生成的随机数 export NOISE_PATH="./noise_test1" #将生成的随机数保存在"./noise_test1"目录 export CKPT_PATH=./outputs/.../ #由训练日志中获得,例如outputs/010-F16S3-STDiT-XL-2/epoch1-global_step2000/ torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path $CKPT_PATH 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test1"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。 export LOCK_RAND=True export SAVE_RAND=False export NOISE_PATH="./noise_test1" export CKPT_PATH=./outputs/.../ #由训练日志中获得,例如outputs/010-F16S3-STDiT-XL-2/epoch1-global_step2000/ torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path $CKPT_PATH 基于官方权重文件分别在GPU和NPU进行推理,对比推理精度。推理精度对齐流程和训练精度对齐流程相同,先在GPU固定推理的随机数。 mkdir noise_test2 #创建文件夹noise_test2,用于存放生成的随机数 export LOCK_RAND=True #是否固定随机数 export SAVE_RAND=True #是否保存生成的随机数 export NOISE_PATH="./noise_test2" #将生成的随机数保存在"./noise_test2"目录 torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path ./OpenSora-v1-HQ-16x512x512.pth 在NPU和GPU机器使用上面生成的固定随机数,分别跑一遍单机单卡推理,比较生成的视频是否一致。在NPU推理前,需要将上面GPU单机单卡推理生成的"./noise_test2"文件夹移到NPU相同目录下。NPU和GPU的推理命令相同,如下。 export LOCK_RAND=True export SAVE_RAND=False export NOISE_PATH="./noise_test2" torchrun --standalone --nproc_per_node 1 inference.py configs/opensora/inference/64x512x512_npu.py --ckpt-path ./OpenSora-v1-HQ-16x512x512.pth
-
Step4 下载数据集 训练使用的开源数据集UCF101.rar,执行如下命令下载数据集并处理。数据集相关介绍参见https://www.crcv.ucf.edu/data/UCF101.php。 mkdir datasets cd datasets wget https://www.crcv.ucf.edu/data/UCF101/UCF101.rar unrar x UCF101.rar cd .. python -m tools.datasets.convert_dataset ucf101 ./datasets/ --split UCF-101 mv ucf101_UCF-101.csv datasets/
-
Step2 启动镜像 获取基础镜像。建议使用官方提供的镜像。镜像地址{image_url}参见表2。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。训练至少需要单机8卡,推理需要单机单卡。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录" export container_name="自定义容器名称" export image_name="镜像名称" // 启动一个容器去运行镜像 docker run -itd \ --device=/dev/davinci0 \ --device=/dev/davinci1 \ --device=/dev/davinci2 \ --device=/dev/davinci3 \ --device=/dev/davinci4 \ --device=/dev/davinci5 \ --device=/dev/davinci6 \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ -v /usr/local/dcmi:/usr/local/dcmi \ -v /etc/ascend_install.info:/etc/ascend_install.info \ -v /sys/fs/cgroup:/sys/fs/cgroup:ro \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ --shm-size 80g \ --net=bridge \ -v ${work_dir}:${container_work_dir} \ --name ${container_name} \ ${image_name} bash 参数说明: device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7。 ${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的大文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小,建议不低于80GB。 name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 v ${work_dir}:${container_work_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 ${image_name}:代表镜像地址。 容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。 driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 进入容器。需要将${container_name}替换为实际的容器名称。 docker exec -it ${container_name} bash 启动容器默认使用ma-user用户。后续所有命令执行也建议使用ma-user用户。
-
Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NPU卡状态。运行如下命令,返回NPU设备信息。 npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查是否安装docker。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。 sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward
-
获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-3rdAIGC-6.3.905-xxx.zip 文件名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像包 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc2-py_3.9-hce_2.0.2312-aarch64-snt9b-20240528150158-b521cc0 SWR上拉取
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格