云服务器内容精选
-
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_type=Ascend-Powered-Engine。 Session初始化。 代码如下:这里只列出最常用的一种方式,更多方式请参考《Session鉴权章节》 from modelarts.session import Session session = Session() 准备训练数据,这里支持三种形式,用户可根据自己的情况选择一种。 import os from modelarts.train_params import InputData base_bucket_path = "obs://modelarts-xxx-a0de02a6/dis-train/cifar10/" base_local_path = "/home/ma-user/work/cifar10/" # 形式1,数据在OBS上,且是一个压缩文件 obs_path = os.path.join(base_bucket_path, "dataset-zip/dataset.zip") data_local = os.path.join(base_local_path, "dataset/") input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=False) # 形式2,数据在OBS上,且是一个目录 #obs_path = os.path.join(base_bucket_path, "dataset/") #data_local = os.path.join(base_local_path, "dataset/") #input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=False) # 形式3,数据在Notebook中,且是一个目录,一般是使用SFS挂载磁盘的场景 #obs_path = os.path.join(base_bucket_path, "dataset-local/") #data_local = os.path.join(base_local_path, "dataset/") #input_data = InputData(obs_path=obs_path, local_path=data_local, is_local_source=True) 参数解释: is_local_source:可选参数,默认为False,指定训练数据的保存位置。 False:训练数据保存在参数obs_path指定的位置中; True:训练数据保存在notebook中,由local_path指定。 obs_path:obs地址。根据is_local_source值的变化,有不同的含义。 is_local_source=False,此时是必选参数,代表训练数据位置,支持文件夹和压缩文件。 is_local_source=True,此时是可选参数。如果用户填写了该参数,则开始训练时会将Notebook中的训练数据压缩并上传到该位置,不可重复上传。如果第一次上传后,建议将is_local_source修改为False,obs_path指向刚才上传的压缩数据文件位置;如果用户没有填写,则不会进行压缩上传。 local_path:必选参数,Notebook中的路径。用户的训练脚本需要从该目录中读取数据,完成训练任务。根据is_local_source值的变化,有不同的含义。 is_local_source=True,此时代表训练数据位置,仅支持文件夹。 is_local_source=False,训练过程中SDK会帮助用户将数据下载到该位置,如果训练数据是压缩文件,下载完成后会进行解压缩。 准备训练脚本。 from modelarts.train_params import TrainingFiles code_dir = os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path.join(base_bucket_path, "train/test-pytorch.py"), code_dir) training_file = TrainingFiles(code_dir=code_dir, boot_file="test-pytorch.py", obs_path=base_bucket_path + 'train/') 参数解释: code_dir:必选参数,训练脚本所在的目录。在训练任务调测的情况下,必须是notebook中的目录,不能是OBS目录。 boot_file:必选参数,训练启动文件路径,路径格式为基于code_dir目录的相对路径,如实例代码中boot_file的完整路径为/home/ma-user/work/cifar10/train/test-pytorch.py,这里就只需要填写test-pytorch.py。 obs_path:可选参数,一个OBS目录。仅在本地单机调试时不需要该参数,提交远程训练时必选,会将训练脚本压缩并上传到该路径。 准备训练输出,如果用户不需要将训练输出上传到OBS,可以省略这一步。 from modelarts.train_params import OutputData output = OutputData(local_path=os.path.join(base_local_path, "output/"), obs_path=os.path.join(base_bucket_path, 'output/')) local_path:必选参数,一个notebook中的路径,训练脚本需要将输出的模型或其他数据保存在该目录下。 obs_path:必选参数,一个OBS目录。SDK会将local_path中的模型文件自动上传到这里。 查看训练支持的AI框架。 from modelarts.estimatorV2 import Estimator Estimator.get_framework_list(session) 参数session即是第一步初始化的数据。如果用户知道要使用的AI框架,可以略过这一步。 Estimator初始化。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoc_num", "value": 2}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='local', train_instance_count=1, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') 参数解释: session:必选参数,1中初始化的参数。 training_files:必选参数,3中初始化的训练文件。 outputs:可选参数,这里传入的是一个list,每个元素都是4中初始化的训练输出。 parameters:可选参数,一个list,每个元素都是一个字典,包含"name"和"value"两个字段,以"--name=value"的形式传递给训练启动文件。value支持字符串,整数,布尔等类型。对于布尔类型,建议用户在训练脚本中使用action='store_true'的形式来解析。 framework_type:必选参数,训练作业使用的AI框架类型,可参考步骤5查询的返回结果。 train_instance_type:必选参数,训练实例类型,这里指定'local'即为在notebook中进行训练。 train_instance_count:必选参数,训练使用的worker个数,单机训练时为1,训练作业只在当前使用的notebook中运行。 script_interpreter:可选参数,指定使用哪个python环境来执行训练任务,如果未指定,会默认使用当前的kernel。 log_url:可选参数,一个OBS地址,训练过程中,SDK会自动将训练的日志上传到该位置。但是如果训练任务运行在Ascend上,则是必选参数。 job_description:可选参数,训练任务的描述。 开始训练。 estimator.fit(inputs=[input_data], job_name="cifar10-dis") 参数解释: inputs:可选参数,一个list,每个元素都是2生成的实例。 job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练输出保存在4中指定的local_path中。 将训练任务得到的输出上传到4指定的obs_path中,日志上传到第六步指定的log_url中。 同时,可以在任务名后增加时间后缀,区分不同的任务名称。 from datetime import datetime, timedelta import time base_name = "cifar10-dis" job_name = base_name + '-' + (datetime.now() + timedelta(hours=8)).strftime('%Y%m%d-%H%M%S') estimator.fit(inputs=[input_data], job_name=job_name) 多次调试。 上一步执行过程中,训练脚本的日志会实时打印到控制台,如果用户的代码或者参数有误的话,可以很方便的看到。在Notebook中经过多次调试,得到想要的结果后,可以进行下一步。 查询训练支持的计算节点类型和最大个数。 from modelarts.estimatorV2 import Estimator Estimator.get_spec_list(session=session) 参数session即是1初始化的数据。返回的是一个字典,其中flavors值是一个列表,描述了训练服务支持的所有规格的信息。每个元素中flavor_id是可直接用于远程训练任务的计算规格,max_num是该规格的最大节点数。如果用户知道要使用的计算规格,可以略过这一步。 提交远程训练作业。 from modelarts.estimatorV2 import Estimator parameters = [] parameters.append({"name": "data_url", "value": data_local}) parameters.append({"name": "output_dir", "value": os.path.join(base_local_path, "output/")}) parameters.append({"name": "epoch_num", "value": 2}) estimator = Estimator(session=session, training_files=training_file, outputs=[output], parameters=parameters, framework_type='PyTorch', train_instance_type='modelarts.vm.cpu.8u', train_instance_count=1, script_interpreter="/home/ma-user/anaconda3/envs/PyTorch-1.4/bin/python", log_url=base_bucket_path + 'log/', job_description='This is a image net train job') estimator.fit(inputs=[input_data], job_name="cifar10-dis") 在本地调测完成的基础上,只需要Estimator初始化时将参数train_instance_type修改为训练服务支持的规格即可(即第10步查询出来的flavor_id的值)。执行fit函数后,即可提交远程训练任务。 训练任务提交后,SDK会依次帮助用户完成以下流程: 将训练脚本打包成zip文件,上传到3中指定的obs_path中。 当训练数据保存在Notebook中,则将其打包成zip文件并上传到指定的obs_path中。 向ModelArts训练服务提交 自定义镜像 训练作业,使用的镜像为当前Notebook的镜像,这样保证了远程训练作业和在Notebook中的训练作业使用的运行环境一致。 训练任务得到的输出上传到4指定的obs_path中,日志上传到这一步log_url指定的位置中。 在这一步中需要注意的一个问题: 如果用户在自己的训练脚本中要创建新的目录或文件,请在以下几种目录中创建: /home/ma-user/work; /cache; inputs或者outputs中指定的local_path,如在步骤2中初始化InputData时,填写了local_path="/home/ma-user/work/xx/yy/",则在该目录下也可以创建新目录或文件。 父主题: 训练作业调测
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格