云服务器内容精选

  • 操作步骤 参数入口: 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 表1 Preemption配置 参数 描述 默认值 yarn.resourcemanager.scheduler.monitor.enable 根据“yarn.resourcemanager.scheduler.monitor.policies”中的策略,启用新的scheduler监控。设置为“true”表示启用监控,并根据scheduler的信息,启动抢占的功能。设置为“false”表示不启用。 false yarn.resourcemanager.scheduler.monitor.policies 设置与scheduler配合的“SchedulingEditPolicy”的类的清单。 org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy yarn.resourcemanager.monitor.capacity.preemption.observe_only 设置为“true”,则执行策略,但是不对集群资源进程抢占操作。 设置为“false”,则执行策略,且根据策略启用集群资源抢占的功能。 false yarn.resourcemanager.monitor.capacity.preemption.monitoring_interval 根据策略监控的时间间隔,单位为毫秒。如果将该参数设置为更大的值,容量检测将不那么频繁地运行。 3000 yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill 应用发送抢占需求到停止container(释放资源)的时间间隔,单位为毫秒。取值范围大于等于0。 默认情况下,如果ApplicationMaster15秒内没有终止container,ResourceManager等待15秒后会强制终止。 15000 yarn.resourcemanager.monitor.capacity.preemption.total_preemption_per_round 在一个周期内能够抢占资源的最大的比例。可使用这个值来限制从集群回收容器的速度。计算出了期望的总抢占值之后,策略会伸缩回这个限制。 0.1 yarn.resourcemanager.monitor.capacity.preemption.max_ignored_over_capacity 集群中资源总量乘以此配置项的值加上某个队列(例如队列A)原有的资源量为资源抢占盲区。当队列A中的任务实际使用的资源超过该抢占盲区时,超过部分的资源将会被抢占。取值范围:0~1。 说明: 设置的值越小越有利于资源抢占。 0 yarn.resourcemanager.monitor.capacity.preemption.natural_termination_factor 设置抢占目标,Container只会抢占所配置比例的资源。 示例,如果设置为0.5,则在5*“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”的时间内,任务会回收所抢占资源的近95%。即接连抢占5次,每次抢占待抢占资源的0.5,呈几何收敛,每次的时间间隔为“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”。取值范围:0~1。 1 ss.engine.scheduler.preemption-enable 是否开启Superior调度器抢占。 false ss.engine.scheduler.preemption-interval-ms 触发抢占的最短时间间隔(即抢占周期),单位:毫秒。 3000 ss.engine.scheduler.preemption-max-per-interval 在一个抢占周期内能抢占Yarn容器的最大数量。 默认值为-1,即无限制。 -1 ss.engine.scheduler.preemption-warn-period-ms 通知Application Master要被抢占的时间。如果被通知的Application Master在这个时间内未释放借到的资源,那么使用这部分资源运行的Yarn容器会被Resource Manager强制终止。单位:毫秒。 10000
  • 回答 HDFS_DELEGATION_TOKEN到期的异常是由于token没有更新或者超出了最大生命周期。 在token的最大生命周期内确保下面的参数值大于作业的运行时间。 “dfs.namenode.delegation.token.max-lifetime”=“604800000”(默认是一星期) 参考修改集群服务配置参数,进入HDFS“全部配置”页面,在搜索框搜索该参数。 建议在token的最大生命周期内参数值为多倍小时数。
  • 配置描述 查看Yarn服务配置参数 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入表1中参数名称。 表1 参数描述 参数 描述 默认值 yarn.acl.enable Yarn权限控制启用开关。 true yarn.webapp.filter-entity-list-by-user 严格视图启用开关,开启后,登录用户只能查看该用户有权限查看的内容。当要开启该功能时,同时需要设置参数“yarn.acl.enable”为true。 true 查看Mapreduce服务配置参数 参考修改集群服务配置参数进入Mapreduce服务参数“全部配置”界面,在搜索框中输入表2中参数名称。 表2 参数描述 参数 描述 默认值 mapreduce.cluster.acls.enabled MR JobHistoryServer权限控制启用开关。该参数为客户端参数,当JobHistoryServer服务端开启权限控制之后该参数生效。 true yarn.webapp.filter-entity-list-by-user MR JobHistoryServer严格视图启用开关,开启后,登录用户只能查看该用户有权限查看的内容。该参数为JobHistoryServer的服务端参数,表示JHS开启了权限控制,但是否要对某一个特定的Application进行控制,是由客户端参数:“mapreduce.cluster.acls.enabled”决定。 true 以上配置会影响restful API和shell命令结果,即以上配置开启后,restful API调用和shell命令运行所返回的内容只包含调用用户有权查看的信息。 当yarn.acl.enable或mapreduce.cluster.acls.enabled设置为false时,即关闭Yarn或Mapreduce的权限校验功能。此时任何用户都可以在Yarn或MapReduce上提交任务和查看任务信息,存在安全风险,请谨慎使用。
  • 使用Yarn客户端 安装客户端,具体请参考安装 MRS 客户端。 以客户端安装用户,登录安装客户端的节点。 执行以下命令,切换到客户端安装目录。 cd /opt/client 执行以下命令配置环境变量。 source bigdata_env 如果集群为安全模式,执行以下命令进行用户认证。普通模式集群无需执行用户认证。 kinit 组件业务用户 直接执行Yarn命令。例如: yarn application -list
  • 在WebUI显示更多历史作业 默认情况下,Yarn WebUI界面支持任务列表分页功能,每个分页最多显示5000条历史作业,总共最多保留10000条历史作业。如果您需要在WebUI上查看更多的作业,可以配置参数如表3。具体配置操作请参考修改集群服务配置参数。 表3 参数说明 配置参数 说明 默认值 yarn.resourcemanager.max-completed-applications 设置在WebUI总共显示的历史作业数量。 10000 yarn.resourcemanager.webapp.pagination.enable 是否开启Yarn WebUI的任务列表后台分页功能。 true yarn.resourcemanager.webapp.pagination.threshold 开启Yarn WebUI的任务列表后台分页功能后,每个分页显示的最大作业数量。 5000 显示更多的历史作业,会影响性能,增加打开Yarn WebUI的时间,建议开启后台分页功能,并根据实际硬件性能修改“yarn.resourcemanager.max-completed-applications”参数。 修改参数值后,需重启Yarn服务使其生效。
  • 在UI显示container日志 默认情况下,系统会将container日志收集到HDFS中。如果您不需要将container日志收集到HDFS中,可以配置参数见表2。具体配置操作请参考修改集群服务配置参数。 表2 参数说明 配置参数 说明 默认值 yarn.log-aggregation-enable 设置是否将container日志收集到HDFS中。 设置为true,表示日志会被收集到HDFS目录中。默认目录为“{yarn.nodemanager.remote-app-log-dir}/${user}/{thisParam}”,该路径可通过界面上的“yarn.nodemanager.remote-app-log-dir-suffix”参数进行配置。 设置为false,表示日志不会收集到HDFS中。 修改参数值后,需重启Yarn服务使其生效。 说明: 在修改值为false并生效后,生效前的日志无法在UI中获取。您可以在“yarn.nodemanager.remote-app-log-dir-suffix”参数指定的路径中获取到生效前的日志。 如果需要在UI上查看之前产生的日志,建议将此参数设置为true。 true
  • 在WebUI显示更多历史作业 默认情况下,Yarn WebUI界面支持任务列表分页功能,每个分页最多显示5000条历史作业,总共最多保留10000条历史作业。如果您需要在WebUI上查看更多的作业,可以配置参数如表4。具体配置操作请参考修改集群服务配置参数。 表4 参数说明 配置参数 说明 默认值 yarn.resourcemanager.max-completed-applications 设置在WebUI总共显示的历史作业数量。 10000 yarn.resourcemanager.webapp.pagination.enable 是否开启Yarn WebUI的任务列表后台分页功能。 true yarn.resourcemanager.webapp.pagination.threshold 开启Yarn WebUI的任务列表后台分页功能后,每个分页显示的最大作业数量。 5000 显示更多的历史作业,会影响性能,增加打开Yarn WebUI的时间,建议开启后台分页功能,并根据实际硬件性能修改“yarn.resourcemanager.max-completed-applications”参数。 修改参数值后,需重启Yarn服务使其生效。
  • 在UI显示container日志 默认情况下,系统会将container日志收集到HDFS中。如果您不需要将container日志收集到HDFS中,可以配置参数见表3。具体配置操作请参考修改集群服务配置参数。 表3 参数说明 配置参数 说明 默认值 yarn.log-aggregation-enable 设置是否将container日志收集到HDFS中。 设置为true,表示日志会被收集到HDFS目录中。默认目录为“{yarn.nodemanager.remote-app-log-dir}/${user}/{thisParam}”,该路径可通过界面上的“yarn.nodemanager.remote-app-log-dir-suffix”参数进行配置。 设置为false,表示日志不会收集到HDFS中。 修改参数值后,需重启Yarn服务使其生效。 说明: 在修改值为false并生效后,生效前的日志无法在UI中获取。您可以在“yarn.nodemanager.remote-app-log-dir-suffix”参数指定的路径中获取到生效前的日志。 如果需要在UI上查看之前产生的日志,建议将此参数设置为true。 true
  • 配置描述 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 根据表1,对如下参数进行设置。 表1 AM作业保留相关参数 参数 说明 默认值 yarn.app.mapreduce.am.work-preserve 是否开启AM作业保留特性。 false yarn.app.mapreduce.am.umbilical.max.retries AM作业保留特性中,运行的容器尝试恢复的最大次数。 5 yarn.app.mapreduce.am.umbilical.retry.interval AM作业保留特性中,运行的容器尝试恢复的时间间隔。单位:毫秒。 10000 yarn.resourcemanager.am.max-attempts ApplicationMaster的重试次数。增加重试次数可以避免当资源不足时造成AM启动失败。 适用于所有ApplicationMaster的全局设置。每个ApplicationMaster都可以使用API设置一个单独的最大尝试次数,但这个次数不能大于全局的最大次数。如果大于了,那ResourceManager将会覆写这个单独的最大尝试次数。取值范围大于等于1。 2
  • 配置场景 在YARN中,ApplicationMaster(AM)与Container类似,都运行在NodeManager(NM)上(本文中忽略未管理的AM)。AM可能由于多种原因崩溃、退出或关闭。如果AM停止运行,ResourceManager(RM)会关闭ApplicationAttempt中管理的所有Container,其中包括当前在NM上运行的所有Container。RM会在另一计算节点上启动新的ApplicationAttempt。 对于不同类型的应用,希望以不同方式处理AM重启的事件。MapReduce类应用的目标是不丢失任务,但允许丢失当前运行的Container。但是对于长周期的YARN服务而言,用户可能并不希望由于AM的故障而导致整个服务停止运行。 YARN支持在新的ApplicationAttempt启动时,保留之前Container的状态,因此运行中的作业可以继续无故障的运行。 图1 AM作业保留
  • 配置描述 有关如何配置CPU隔离与安全的CGroups功能的详细信息,请参见Hadoop官网: MRS 3.2.0之前版本:http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/NodeManagerCgroups.html MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3.3.1/hadoop-yarn/hadoop-yarn-site/NodeManagerCgroups.html 由于CGroups为Linux内核特性,是通过LinuxContainerExecutor进行开放。请参考官网资料对LinuxContainerExecutor进行安全配置。您可通过官网资料了解系统用户和用户组配置对应的文件系统权限。详情请参见: MRS 3.2.0之前版本:http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-common/SecureMode.html#LinuxContainerExecutor MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-common/SecureMode.html#LinuxContainerExecutor 请勿修改对应文件系统中各路径所属的用户、用户组及对应的权限,否则可能导致本功能异常。 当参数“yarn.nodemanager.resource.percentage-physical-cpu-limit”配置过小,导致可使用的核不足1个时,例如4核节点,将此参数设置为20%,不足1个核,那么将会使用系统全部的核。Linux的一些版本不支持Quota模式,例如Cent OS。在这种情况下,可以使用CPUset模式。 配置cpuset模式,即Yarn只能使用配置的CPU,需要在Manager界面添加以下配置。 表1 cpuset配置 参数 描述 默认值 yarn.nodemanager.linux-container-executor.cgroups.cpu-set-usage 设置为“true”时,应用以cpuset模式运行。 false 配置strictcpuset模式,即Container只能使用配置的CPU,需要在Manager界面添加以下配置。 表2 CPU硬隔离参数配置 参数 描述 默认值 yarn.nodemanager.linux-container-executor.cgroups.cpu-set-usage 设置为“true”时,应用以cpuset模式运行。 false yarn.nodemanager.linux-container-executor.cgroups.cpuset.strict.enabled 设置为true时,Container只能使用配置的CPU。 false 要从cpuset模式切换到Quota模式,必须遵循以下条件: 配置“yarn.nodemanager.linux-container-executor.cgroups.cpu-set-usage”=“false”。 删除“/sys/fs/cgroup/cpuset/hadoop-yarn/”路径下container文件夹(如果存在)。 删除“/sys/fs/cgroup/cpuset/hadoop-yarn/”路径下cpuset.cpus文件中设置的所有CPU。
  • YARN结构 YARN分层结构的本质是ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。ResourceManager将各个资源部分(计算、内存、带宽等)精心安排给基础NodeManager(YARN的每个节点代理)。ResourceManager还与Application Master一起分配资源,与NodeManager一起启动和监视它们的基础应用程序。在此上下文中,Application Master承担了以前的TaskTracker的一些角色,ResourceManager承担了JobTracker的角色。 Application Master管理一个在YARN内运行的应用程序的每个实例。Application Master负责协调来自ResourceManager的资源,并通过NodeManager监视容器的执行和资源使用(CPU、内存等的资源分配)。 NodeManager管理一个YARN集群中的每个节点。NodeManager提供针对集群中每个节点的服务,从监督对一个容器的终生管理到监视资源和跟踪节点健康。MRv1通过插槽管理Map和Reduce任务的执行,而NodeManager管理抽象容器,这些容器代表着可供一个特定应用程序使用的针对每个节点的资源。 图1 YARN结构 图1中各部分的功能如表1所示。 表1 结构图说明 名称 描述 Client YARN Application客户端,用户可以通过客户端向ResourceManager提交任务,查询Application运行状态等。 ResourceManager(RM) 负责集群中所有资源的统一管理和分配。接收来自各个节点(NodeManager)的资源汇报信息,并根据收集的资源按照一定的策略分配给各个应用程序。 NodeManager(NM) NodeManager(NM)是YARN中每个节点上的代理,管理Hadoop集群中单个计算节点,包括与ResourceManger保持通信,监督Container的生命周期管理,监控每个Container的资源使用(内存、CPU等)情况,追踪节点健康状况,管理日志和不同应用程序用到的附属服务(auxiliary service)。 ApplicationMaster(AM) 即图中的App Mstr,负责一个Application生命周期内的所有工作。包括:与RM调度器协商以获取资源;将得到的资源进一步分配给内部任务(资源的二次分配);与NM通信以启动/停止任务;监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。 Container Container是YARN中的资源抽象,封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等(目前仅封装内存和CPU),当AM向RM申请资源时,RM为AM返回的资源便是用Container表示。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。 在YARN中,资源调度器是以层级队列方式组织资源的,这种组织方式有利于资源在不同队列间分配和共享,进而提高集群资源利用率。如下图所示,Superior Scheduler和Capacity Scheduler的核心资源分配模型相同。 调度器会维护队列的信息。用户可以向一个或者多个队列提交应用。每次NM心跳的时候,调度器会根据一定规则选择一个队列,再选择队列上的一个应用,并尝试在这个应用上分配资源。若因参数限制导致分配失败,将选择下一个应用。选择一个应用后,调度器会处理此应用的资源申请。其优先级从高到低依次为:本地资源的申请、同机架的申请,任意机器的申请。 图2 资源分配模型
  • YARN原理 新的Hadoop MapReduce框架被命名为MRv2或YARN。YARN主要包括ResourceManager、ApplicationMaster与NodeManager三个部分。 ResourceManager:RM是一个全局的资源管理器,负责整个系统的资源管理和分配。主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager)。 调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念Container表示。Container是一个动态资源分配单位,将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。 应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动等。 NodeManager:NM是每个节点上的资源和任务管理器,一方面,会定时向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,接收并处理来自AM的Container启动/停止等请求。 ApplicationMaster:AM负责一个Application生命周期内的所有工作。包括: 与RM调度器协商以获取资源。 将得到的资源进一步分配给内部的任务(资源的二次分配)。 与NM通信以启动/停止任务。 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
  • 开源容量调度器Capacity Scheduler原理 Capacity Scheduler是一种多用户调度器,它以队列为单位划分资源,为每个队列设定了资源最低保证和使用上限。同时,也为每个用户设定了资源使用上限以防止资源滥用。而当一个队列的资源有剩余时,可暂时将剩余资源共享给其他队列。 Capacity Scheduler支持多个队列,为每个队列配置一定的资源量,并采用FIFO调度策略。为防止同一用户的应用独占队列资源,Capacity Scheduler会对同一用户提交的作业所占资源量进行限定。调度时,首先计算每个队列使用的资源,选择使用资源最少的队列;然后按照作业优先级和提交时间顺序选择,同时考虑用户资源量的限制和内存限制。Capacity Scheduler主要有如下特性: 容量保证。MRS集群管理员可为每个队列设置资源最低保证和资源使用上限,而所有提交到队列的应用程序共享这些资源。 灵活性。如果一个队列中的资源有剩余,可以暂时共享给那些需要资源的队列,而一旦该队列有新的应用程序提交,则占用资源的队列将资源释放给该队列。这种资源灵活分配的方式可明显提高资源利用率。 多重租赁。支持多用户共享集群和多应用程序同时运行。为防止单个应用程序、用户或者队列独占集群中的资源,MRS集群管理员可为之增加多重约束(比如单个应用程序同时运行的任务数等)。 安全保证。每个队列有严格的ACL列表规定它的访问用户,每个用户可指定哪些用户允许查看自己应用程序的运行状态或者控制应用程序。此外,MRS集群管理员可指定队列管理员和集群系统管理员。 动态更新配置文件。MRS集群管理员可根据需要动态修改配置参数以实现在线集群管理。 Capacity Scheduler中每个队列可以限制资源使用量。队列间的资源分配以使用量作为排列依据,使得容量小的队列有竞争优势。集群整体吞吐较大,延迟调度机制使得应用可以有机会放弃跨机器或者跨机架的调度,争取本地调度。
  • 操作步骤 参数入口: 参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 表1 Preemption配置 参数 描述 默认值 yarn.resourcemanager.scheduler.monitor.enable 根据“yarn.resourcemanager.scheduler.monitor.policies”中的策略,启用新的scheduler监控。设置为“true”表示启用监控,并根据scheduler的信息,启动抢占的功能。设置为“false”表示不启用。 false yarn.resourcemanager.scheduler.monitor.policies 设置与scheduler配合的“SchedulingEditPolicy”的类的清单。 org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy yarn.resourcemanager.monitor.capacity.preemption.observe_only 设置为“true”,则执行策略,但是不对集群资源进程抢占操作。 设置为“false”,则执行策略,且根据策略启用集群资源抢占的功能。 false yarn.resourcemanager.monitor.capacity.preemption.monitoring_interval 根据策略监控的时间间隔,单位为毫秒。如果将该参数设置为更大的值,容量检测将不那么频繁地运行。 3000 yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill 应用发送抢占需求到停止container(释放资源)的时间间隔,单位为毫秒。取值范围大于等于0。 默认情况下,如果ApplicationMaster15秒内没有终止container,ResourceManager等待15秒后会强制终止。 15000 yarn.resourcemanager.monitor.capacity.preemption.total_preemption_per_round 在一个周期内能够抢占资源的最大的比例。可使用这个值来限制从集群回收容器的速度。计算出了期望的总抢占值之后,策略会伸缩回这个限制。 0.1 yarn.resourcemanager.monitor.capacity.preemption.max_ignored_over_capacity 集群中资源总量乘以此配置项的值加上某个队列(例如队列A)原有的资源量为资源抢占盲区。当队列A中的任务实际使用的资源超过该抢占盲区时,超过部分的资源将会被抢占。取值范围:0~1。 说明: 设置的值越小越有利于资源抢占。 0 yarn.resourcemanager.monitor.capacity.preemption.natural_termination_factor 设置抢占目标,Container只会抢占所配置比例的资源。 示例,如果设置为0.5,则在5*“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”的时间内,任务会回收所抢占资源的近95%。即接连抢占5次,每次抢占待抢占资源的0.5,呈几何收敛,每次的时间间隔为“yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill”。取值范围:0~1。 1