云服务器内容精选
-
使用自定义依赖包的模型配置文件示例 如下示例中,定义了1.16.4版本的numpy的依赖环境。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 { "model_algorithm": "image_classification", "model_type": "TensorFlow", "runtime": "python3.6", "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [ { "type": "string" } ] } } } } } ], "metrics": { "f1": 0.124555, "recall": 0.171875, "precision": 0.00234938928519385, "accuracy": 0.00746268656716417 }, "dependencies": [ { "installer": "pip", "packages": [ { "restraint": "EXACT", "package_version": "1.16.4", "package_name": "numpy" } ] } ] }
-
机器学习类型的模型配置文件示例 以下代码以XGBoost为例。 模型输入: { "req_data": [ { "sepal_length": 5, "sepal_width": 3.3, "petal_length": 1.4, "petal_width": 0.2 }, { "sepal_length": 5, "sepal_width": 2, "petal_length": 3.5, "petal_width": 1 }, { "sepal_length": 6, "sepal_width": 2.2, "petal_length": 5, "petal_width": 1.5 } ] } 模型输出: { "resp_data": [ { "predict_result": "Iris-setosa" }, { "predict_result": "Iris-versicolor" } ] } 配置文件: { "model_type": "XGBoost", "model_algorithm": "xgboost_iris_test", "runtime": "python2.7", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "application/json", "data": { "type": "object", "properties": { "req_data": { "items": [ { "type": "object", "properties": {} } ], "type": "array" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "resp_data": { "type": "array", "items": [ { "type": "object", "properties": { "predict_result": {} } } ] } } } } } ] }
-
自定义镜像 类型的模型配置文件示例 模型输入和输出与目标检测模型配置文件示例类似。 模型预测输入为图片类型时,request请求示例如下: 该实例表示模型预测接收一个参数名为images、参数类型为file的预测请求,在推理界面会显示文件上传按钮,以文件形式进行预测。 1 2 3 4 5 6 7 8 9 10 11 { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } } 模型预测输入为json数据类型时,request请求示例如下: 该实例表示模型预测接收json请求体,只有一个参数名为input、参数类型为string的预测请求,在推理界面会显示文本输入框,用于填写预测请求。 1 2 3 4 5 6 7 8 9 10 11 { "Content-type": "application/json", "data": { "type": "object", "properties": { "input": { "type": "string" } } } } 完整请求示例如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 { "model_algorithm": "image_classification", "model_type": "Image", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "required": [ "predicted_label", "scores" ], "properties": { "predicted_label": { "type": "string" }, "scores": { "type": "array", "items": [{ "type": "array", "minItems": 2, "maxItems": 2, "items": [{ "type": "string" }, { "type": "number" } ] }] } } } } }] }
-
预测分析模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 { "data": { "req_data": [ { "buying_price": "high", "maint_price": "high", "doors": "2", "persons": "2", "lug_boot": "small", "safety": "low", "acceptability": "acc" }, { "buying_price": "high", "maint_price": "high", "doors": "2", "persons": "2", "lug_boot": "small", "safety": "low", "acceptability": "acc" } ] } } 模型输出 1 2 3 4 5 6 7 8 9 10 11 12 { "data": { "resp_data": [ { "predict_result": "unacc" }, { "predict_result": "unacc" } ] } } 配置文件 代码中request结构和response结构中的data参数是json schema数据结构。data/properties里面的内容对应“模型输入”和“模型输出”。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 { "model_type": "TensorFlow", "model_algorithm": "predict_analysis", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [ { "url": "/", "method": "post", "request": { "Content-type": "application/json", "data": { "type": "object", "properties": { "data": { "type": "object", "properties": { "req_data": { "items": [ { "type": "object", "properties": {} } ], "type": "array" } } } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "data": { "type": "object", "properties": { "resp_data": { "type": "array", "items": [ { "type": "object", "properties": {} } ] } } } } } } } ], "dependencies": [ { "installer": "pip", "packages": [ { "restraint": "EXACT", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "EXACT", "package_version": "5.2.0", "package_name": "Pillow" } ] } ] }
-
图像分类模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 2 3 4 5 6 7 { "predicted_label": "flower", "scores": [ ["rose", 0.99], ["begonia", 0.01] ] } 配置文件 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 { "model_type": "TensorFlow", "model_algorithm": "image_classification", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "predicted_label": { "type": "string" }, "scores": { "type": "array", "items": [{ "type": "array", "minItems": 2, "maxItems": 2, "items": [ { "type": "string" }, { "type": "number" } ] }] } } } } }], "dependencies": [{ "installer": "pip", "packages": [{ "restraint": "ATLEAST", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "", "package_version": "", "package_name": "Pillow" } ] }] } 如下代码以MindSpore引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 "[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157 11.290332 -1.5861531 5.7887416 ]]" 配置文件 { "model_algorithm": "image_classification", "model_type": "MindSpore", "runtime": "mindspore_2.1.0-cann_6.3.2-py_3.7-euler_2.10.7-aarch64-snt9b", "metrics": { "f1": 0.124555, "recall": 0.171875, "precision": 0.0023493892851938493, "accuracy": 0.00746268656716417 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [{ "type": "string" }] } } } } } ], "dependencies": [] }
-
目标检测模型配置文件示例 如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 { "detection_classes": [ "face", "arm" ], "detection_boxes": [ [ 33.6, 42.6, 104.5, 203.4 ], [ 103.1, 92.8, 765.6, 945.7 ] ], "detection_scores": [0.99, 0.73] } 配置文件 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 { "model_type": "TensorFlow", "model_algorithm": "object_detection", "runtime": "tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64", "metrics": { "f1": 0.345294, "accuracy": 0.462963, "precision": 0.338977, "recall": 0.351852 }, "apis": [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "application/json", "data": { "type": "object", "properties": { "detection_classes": { "type": "array", "items": [{ "type": "string" }] }, "detection_boxes": { "type": "array", "items": [{ "type": "array", "minItems": 4, "maxItems": 4, "items": [{ "type": "number" }] }] }, "detection_scores": { "type": "array", "items": [{ "type": "number" }] } } } } }], "dependencies": [{ "installer": "pip", "packages": [{ "restraint": "EXACT", "package_version": "1.15.0", "package_name": "numpy" }, { "restraint": "EXACT", "package_version": "5.2.0", "package_name": "Pillow" } ] }] }
-
apis参数代码示例 [{ "url": "/", "method": "post", "request": { "Content-type": "multipart/form-data", "data": { "type": "object", "properties": { "images": { "type": "file" } } } }, "response": { "Content-type": "applicaton/json", "data": { "type": "object", "properties": { "mnist_result": { "type": "array", "item": [ { "type": "string" } ] } } } } }]
-
使用场景 图1 模型包应用场景 模型包应用场景: 业务人员从训练平台导入模型包:算法人员可以在训练平台上开发算法,业务人员通过联邦服务提供的Console从训练平台导入开发好的模型包。 业务人员从外部导入模型包:算法人员也可以在第三方环境上开发算法并遵循联邦学习部署服务包规范进行打包,并通过联邦服务提供的Console导入模型包。 边缘节点执行环境在本地运行模型包:边缘节点从联邦Server下载模型包之后,按照NAIE的规范解析模型包,运行模型包中的模型训练和评估算法参与联邦。 父主题: 联邦学习模型包规范
更多精彩内容
CDN加速
GaussDB
文字转换成语音
免费的服务器
如何创建网站
域名网站购买
私有云桌面
云主机哪个好
域名怎么备案
手机云电脑
SSL证书申请
云点播服务器
免费OCR是什么
电脑云桌面
域名备案怎么弄
语音转文字
文字图片识别
云桌面是什么
网址安全检测
网站建设搭建
国外CDN加速
SSL免费证书申请
短信批量发送
图片OCR识别
云数据库MySQL
个人域名购买
录音转文字
扫描图片识别文字
OCR图片识别
行驶证识别
虚拟电话号码
电话呼叫中心软件
怎么制作一个网站
Email注册网站
华为VNC
图像文字识别
企业网站制作
个人网站搭建
华为云计算
免费租用云托管
云桌面云服务器
ocr文字识别免费版
HTTPS证书申请
图片文字识别转换
国外域名注册商
使用免费虚拟主机
云电脑主机多少钱
鲲鹏云手机
短信验证码平台
OCR图片文字识别
SSL证书是什么
申请企业邮箱步骤
免费的企业用邮箱
云免流搭建教程
域名价格